CSE 312

Foundations of Computing II

Lecture 13: Poisson wrap-up
Continuous RV

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
 - In your section. Closed book . No electronic aids.
- Practice midterm is posted
 - Has format you will see, including 2-page "cheat sheet".

Nov

- Other practice materials linked also
- Midterm Q&A session next Tuesday 4pm on Zoom

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all i = 0,1,2,3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

General principle:

- of λ per time unit
- Disjoint time intervals independent •
- Number of events happening at a time unit X is distributed according to $Poi(\lambda)$
- Events happen at an average rate Poisson approximates Binomial when n is large, p is small, and np' is moderate
 - Sum of independent Poisson is still a Poisson

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0,1,2,3..., $P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \Sigma_i \lambda_i$. Let $Z = \Sigma_i X_i$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let
$$Z = X + Y$$
. For all $z = 0,1,2,3...$,

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

$$P(Z = z) = ?$$

1. $P(Z=z) = \sum_{i=0}^{z} P(X=j, Y=z-j)$

2.
$$P(Z = z) = \sum_{i=0}^{\infty} P(X = j, Y = z - j)$$

3.
$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j) P(X = j)$$
 C. Only 1 is right D. Don't know

4.
$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

pollev.com/paulbeame028

- A. All of them are right
- B. The first 3 are right

Proof

$$Z(z) = \sum_{j=0}^{\infty} P(X = j, Y = Z - j)$$

$$= \sum_{j=0}^{k} P(X=j) P(Y=z-j) \Rightarrow \sum_{j=0}^{k} e^{-\lambda_1} \cdot \frac{\lambda_1^j}{j!} \cdot e^{-\lambda_2} \cdot \frac{\lambda_2^{z-j}}{z-j!}$$
 Independence

$$=e^{-\lambda_1-\lambda_2}\left(\sum_{j=0}^{k}\cdot\frac{1^{2}}{j!z-j!}\cdot\lambda_1^j\lambda_2^{z-j}\right)$$

$$= e^{-2\left(\sum_{j=0}^{k} \frac{z!}{j! z - j!} \lambda_1^j \lambda_2^{z-j}\right)} \frac{1}{z!} - e^{-\lambda} = e^{-\lambda} \left(\sum_{j=0}^{k} \frac{(z-j)}{j! z - j!} \lambda_1^j \lambda_2^{z-j}\right)$$
Rinomial (2) (1)

$$= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^z \cdot \frac{1}{z!}$$

$$\frac{\lambda_1 \cdot \lambda_1^j}{j!} \cdot e^{-\lambda_2} \cdot \frac{\lambda_2^{z-j}}{z-j!}$$

$$\sum_{j=0}^{2} \left(\begin{bmatrix} z \\ j \end{bmatrix} \right) \left(\begin{bmatrix} z - j \end{bmatrix} \right)$$

Binomial

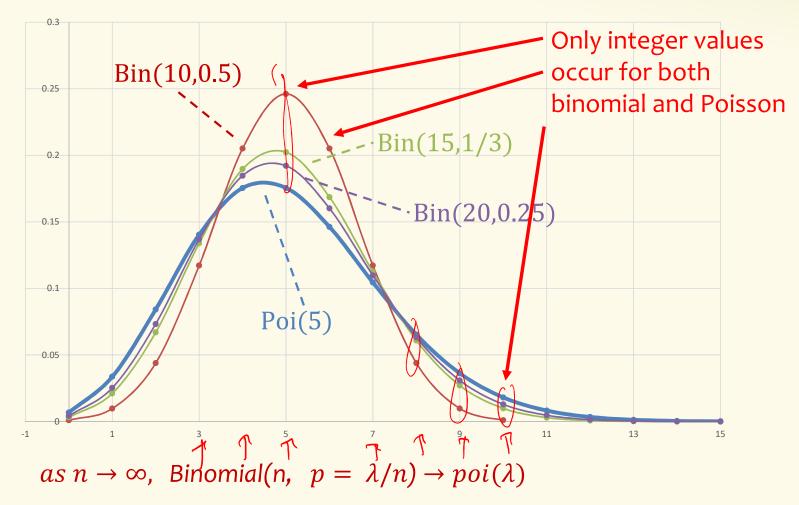
$$-Poi(\lambda)$$

Don't be fooled by this picture: Poisson RVs are discrete

$$\lambda = 5$$

$$p = \frac{5}{n}$$

$$n = 10,15,20$$



Agenda

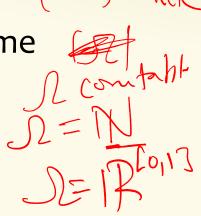
- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

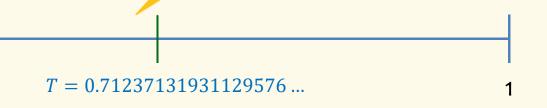
Often we want to model experiments where the outcome is not discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within [0,1] is equally likely
 - Time measured with infinitesimal precision.

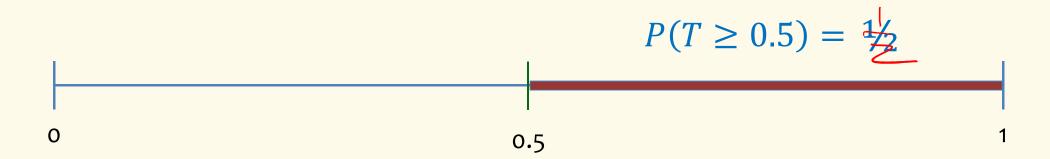




The outcome space is not discrete

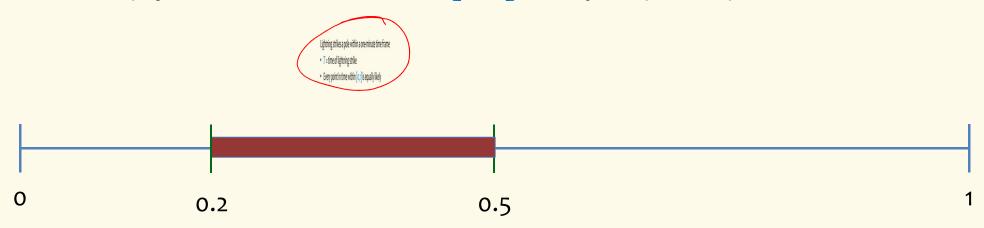
Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely



Lightning strikes a pole within a one-minute time frame

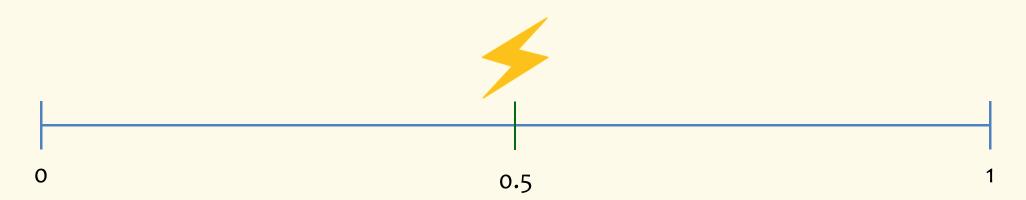
- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely



$$P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



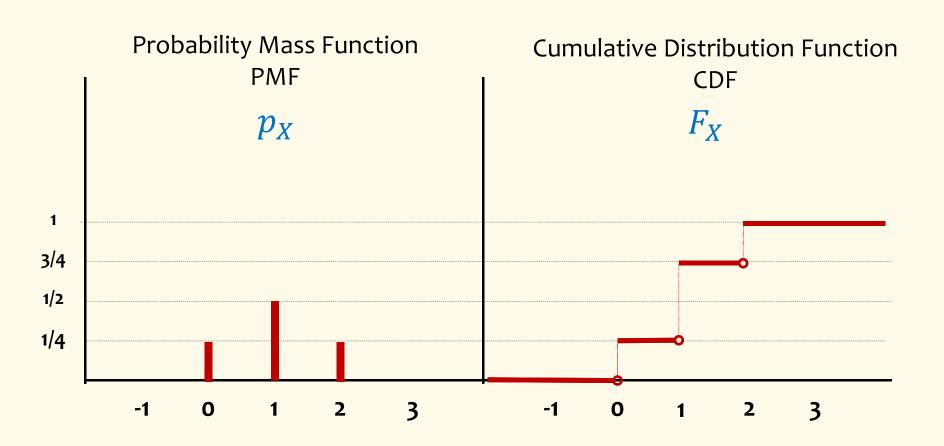
$$P(T = 0.5) = 0$$

Bottom line

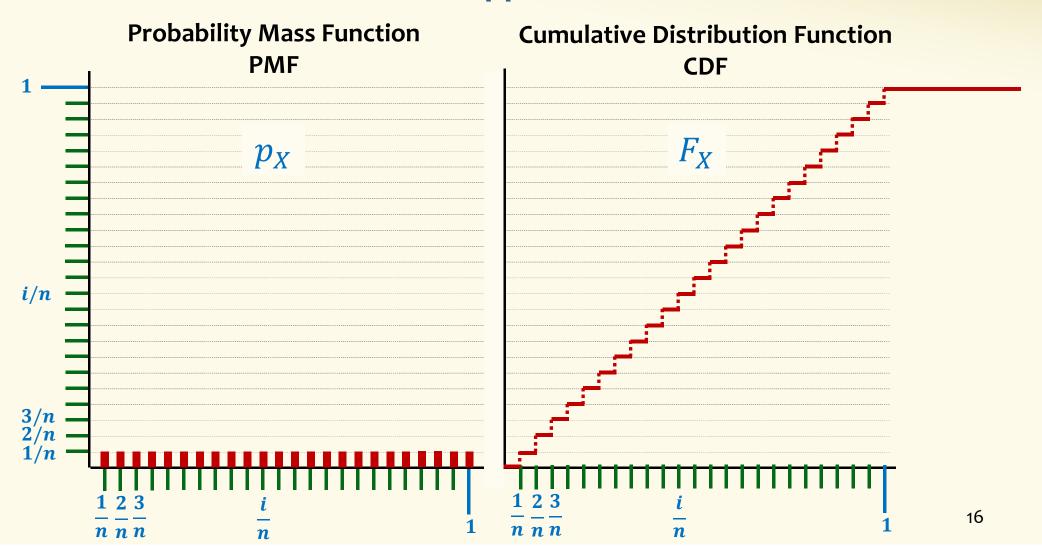
- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $-P(T \in [0,1]) = 1$ $-P(T \in [a,b]) = b - a$
- How do we model the behavior of T?

First try: A discrete approximation

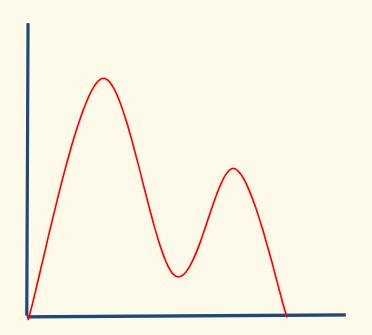
Recall: Cumulative Distribution Function (CDF)



A Discrete Approximation



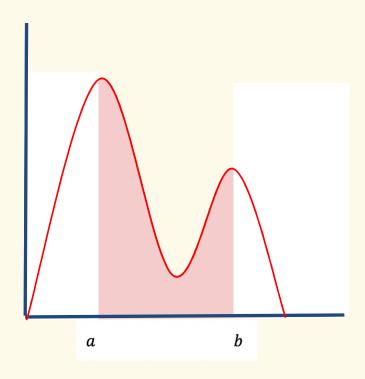
Definition. A continuous random variable X is defined by a probability density function (PDF) $f_X: \mathbb{R} \to \mathbb{R}$, such that



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

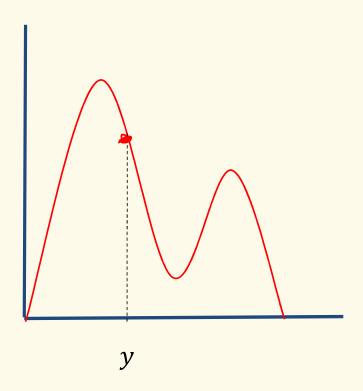


Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

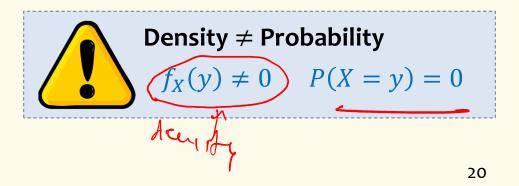
$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

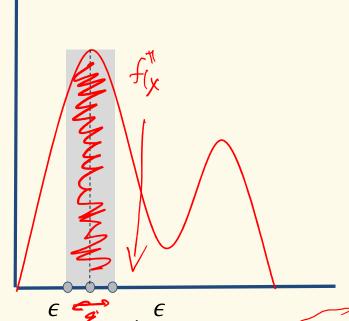


Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$





Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

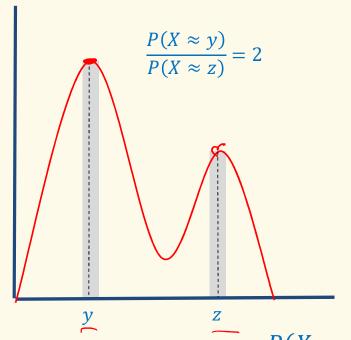
Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

What $f_X(x)$ measings: The local **rate** at which probability accumulates



Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_X: \mathbb{R} \to \mathbb{R}$, such that

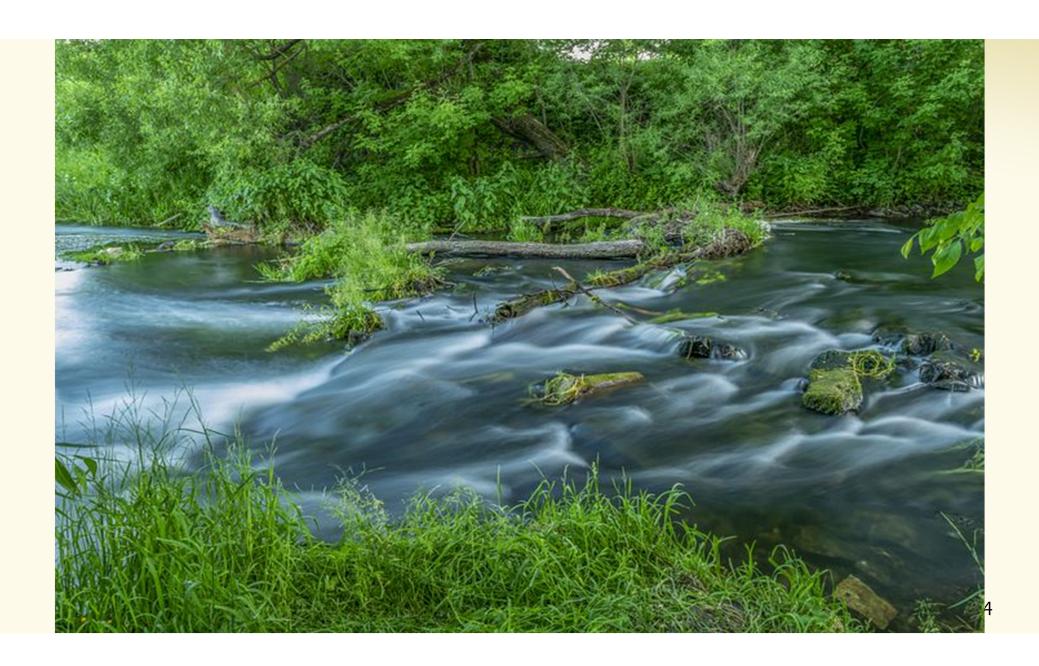
Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

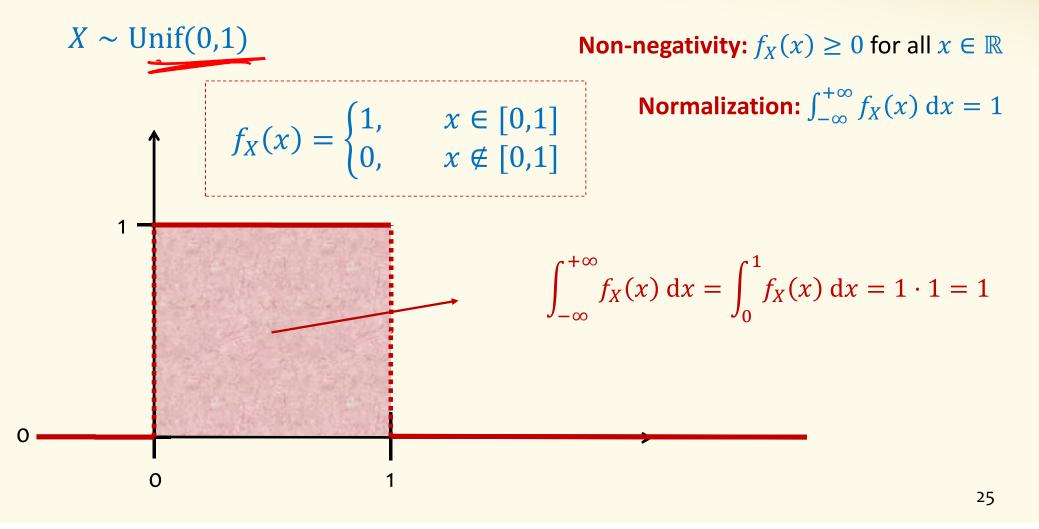
$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$$

$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$



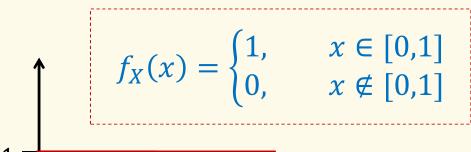
PDF of Uniform RV



Probability of Event

$$X \sim \text{Unif}(0,1)$$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

1. If
$$0 \le a$$
 and $a \le b \le 1$

$$P(a \le X \le b) = b - a$$

2. If
$$a < 0$$
 and $0 \le b \le 1$ Poll: polley/paulbeameo28

$$P(a \le X \le b) = b$$

A. All of them are correct

3. If
$$a \ge 0$$
 and $b > 1$

B. Only 1, 2, 4 are right

$$P(a \le X \le b) = b - a$$

C. Only 1 is right

4. If
$$a < 0$$
 and $b > 1$

D. Only 1 and 2 are right

$$P(a \le X \le b) = 1$$

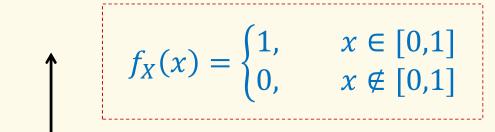
or orny rand.

Probability of Event

 $X \sim \text{Unif}(0,1)$

0

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$



$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) dx = 0$$

$$P(X \approx y) \approx \epsilon f_X(y) = \epsilon$$

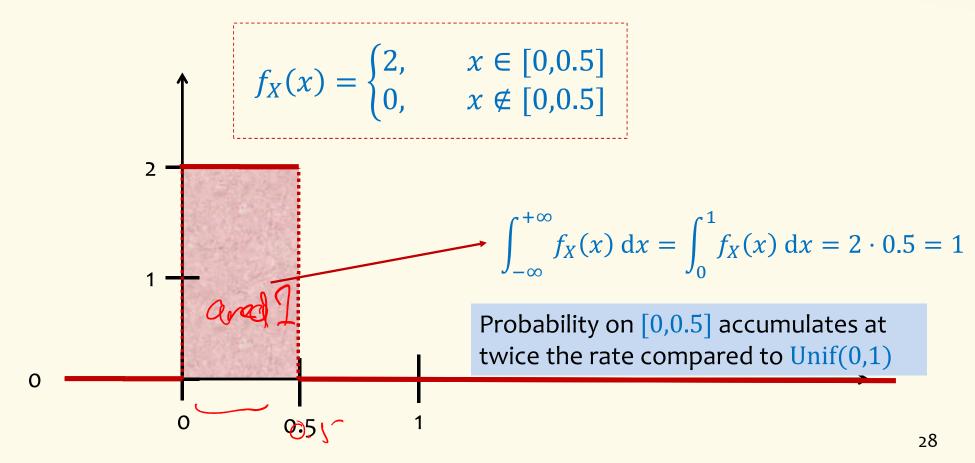
$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}$$

PDF of Uniform RV

Density ≠ **Probability**

 $f_X(x) \gg 1$ is possible!

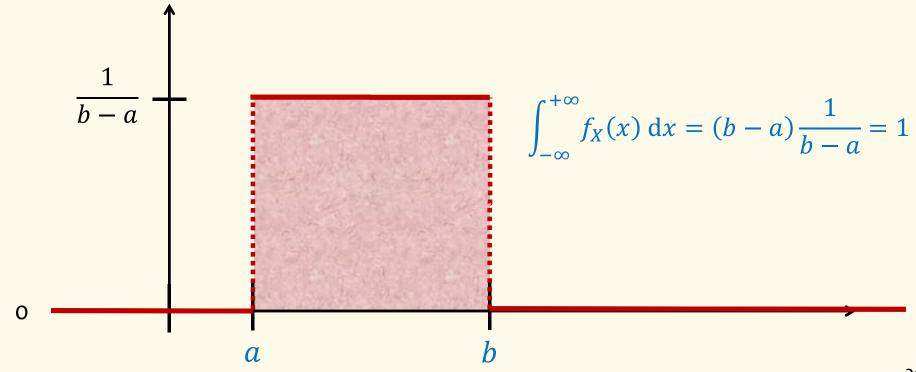
 $X \sim \text{Unif}(0,0.5)$



Uniform Distribution

$$X \sim \text{Unif}(a, b)$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$



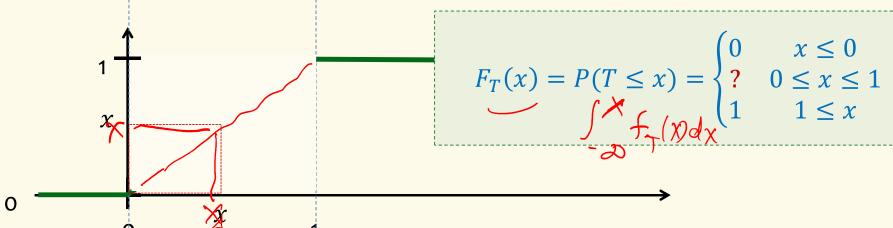
Example. $T \sim \text{Unif}(0,1)$

 χ

0

Probability Density Function

Cumulative Distribution Function



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) \, \mathrm{d}x$$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx} F_X(x)$

Therefore:
$$P(X \in [a,b]) = F_X(b) - F_X(a)$$

$$= \int_{-\infty}^{\alpha} - \int_{-\infty}^{\alpha$$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

$$\lim_{a\to-\infty} F_X(a) = P(X \le -\infty) = 0 \qquad \lim_{a\to+\infty} F_X(a) = P(X \le +\infty) = 1$$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$\int p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$