CSE 312

 Foundations of Computing II

 Foundations of Computing II}

Lecture 13: Poisson wrap-up
Continuous RV

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
- In your section. Closed book. No electronic aids.
- Practice midterm is posted
- Has format you will see, including 2-page "cheat sheet".
- Other practice materials linked also
- Midterm Q\&A session next Tuesday 4pm on Zoom

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate - Poisson approximates Binomial when n is large, of λ per time unit p is small, and $n p$ is moderate
- Disjoint time intervals independent - Sum of independent Poisson is still a Poisson
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$. Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Proof

$$
Z=X+Y \text { where } X \sim \operatorname{Poi}\left(\lambda_{1}\right) \text { and } Y \sim \operatorname{Poi}\left(\lambda_{2}\right) \text { are independent }
$$

$$
\begin{aligned}
& P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) \quad \text { Law of total probability } \\
& =\sum_{j=0}^{Z} P(X=j) P(Y=z-j)=\Sigma_{j=0}^{z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
& =e^{-\lambda_{1}-\lambda_{2}}\left(\Sigma_{j=0}^{Z} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \\
& =e^{-\lambda}\left(\sum_{j=0}^{z} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} \\
& =e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad
\end{aligned} \quad \text { Binomial } \quad \text { Theorem } \quad l l
$$

Don't be fooled by this picture: Poisson RVs are discrete

$\lambda=5$
$p=\frac{5}{n}$
$n=10,15,20$

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

The outcome space is not discrete

Lightning strikes a pole within a one-minute time frame

- $T=$ time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$$
P(T \geq 0.5)=1 / 2
$$

Lightning strikes a pole within a one-minute time frame

- $T=$ time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

	\mid
0	0.5
$P(T=0.5)=0$	

Bottom line

- This gives rise to a different type of random variable
- $P(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-P(T \in[0,1])=1$
$-P(T \in[a, b])=b-a$
-...
- How do we model the behavior of T ?

First try: A discrete approximation

Recall: Cumulative Distribution Function (CDF)

A Discrete Approximation

Cumulative Distribution Function CDF

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

y

Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

Density \neq Probability

$$
f_{X}(y) \neq 0 \quad P(X=y)=0
$$

Probability Density Function - Intuition

What $f_{X}(x)$ measures: The local rate at which probability accumulates

Probability Density Function - Intuition

$$
\begin{aligned}
& \frac{P(X \approx y)}{P(X \approx z)}=2 \\
& \text { Non-negativity: } f_{X}(x) \geq 0 \text { for all } x \in \mathbb{R} \\
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0 \\
& P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y) \\
& \frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
\end{aligned}
$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

PDF of Uniform RV

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
$f_{X}(x)=\left\{\begin{array}{ll}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{array} \quad\right.$ Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
0

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Example. $T \sim \operatorname{Unif}(0,1)$
0

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
? & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
Therefore: $P(X \in[a, b])=F_{X}(b)-F_{X}(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\lim _{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \lim _{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

