
CSE 312

Foundations of Computing II

Lecture 13: Poisson wrap-up
Continuous RV
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Announcements

• PSet 4 due today

• PSet 3 returned yesterday

• Midterm general info is posted on Ed 

– In your section.  Closed book . No electronic aids.  

• Practice midterm is posted

– Has format you will see, including 2-page “cheat sheet”.

– Other practice materials linked also

• Midterm Q&A session next Tuesday 4pm on Zoom 
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Agenda

• Wrap-up of Poisson RVs

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function
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General principle: 
• Events happen at an average rate 

of � per time unit 
• Disjoint time intervals independent
• Number of events happening at a 

time unit � is distributed according 
to Poi(�) 

Definition. A Poisson random variable � with parameter � ≥ 0 is such 
that for all � = 0,1,2,3 …,

 � = � = ��� ⋅
��

�!
 

• Poisson approximates Binomial when � is large, 
� is small, and �� is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(��) and �~Poi(��) such that � = �� + ��. 

Let ! = � + �.    For all " = 0,1,2,3 …,

 ! = " = ��� ⋅
�#

$!
 

More generally, let ��~Poi �� , ⋯ , �&~Poi(�&) such that � = Σ���. 

Let ! = Σ���

 ! = " = ��� ⋅
�#

$!
 



Proof

6

 ! = " = Σ()*
$  � = +, � = " − +

= Σ()*
$  � = +) (� = " − + = Σ()*

$   ���- ⋅
��

(

+!
⋅ ���. ⋅

��
$�(

" − +!

= ���-��.  Σ()*
$  ⋅

1

+! " − +!
⋅ ��

(
��

$�(

= ���  Σ()*
$  

"!

+! " − +!
⋅ ��

(
��

$�( 1

"!

= ��� ⋅ �� + ��
$ ⋅

�

$!
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Law of total probability

Independence

Binomial 
Theorem

! = � + � where �~Poi(��) and �~Poi(��) are independent



Don’t be fooled by this picture:  Poisson RVs are discrete
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� = 5

� =
0

&

� = 10,15,20
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Bin(10,0.5)

Bin(15,1/3)

Bin(20,0.25)

Poi(5)

56 � → ∞, Binomial(n,   � =  �/�) → �9�(�)

Only integer values 
occur for both 
binomial and Poisson



Agenda

• Wrap-up of Poisson RVs

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

•  : = time of lightning strike

• Every time within [0,1] is equally likely

– Time measured with infinitesimal precision.
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0 1: = 0.71237131931129576 …

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame

•  : = time of lightning strike

• Every point in time within [0,1] is equally likely

0 10.5

½ : ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame

•  : = time of lightning strike

• Every point in time within [0,1] is equally likely

 0.2 ? : ? 0.5 =
0 10.5

0.5 , 0.2 = 0.3
0.2
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Lightning strikes a pole within a one-minute time frame

• : = time of lightning strike

• Every point in time within [0,1] is equally likely

 : = 0.5 =
0 10.5

0



Bottom line

• This gives rise to a different type of random variable

•   : = @ = 0 for all @ ∈ [0,1]
• Yet, somehow we want

–   : ∈ [0,1] = 1
–  : ∈ [5, D] = D , 5
– …

• How do we model the behavior of :?
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First try:  A discrete approximation



Recall:  Cumulative Distribution Function (CDF)
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A Discrete Approximation



Definition. A continuous random variable � is defined by a 
probability density function (PDF) LE: ℝ → ℝ, such that 
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Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
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Probability Density Function - Intuition

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR�R � 1

 5 ? � ? D � S LE @  d@T
U
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Probability Density Function - Intuition

V

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR�R � 1

 5 ? � ? D � S LE @  d@T
U

 � � V �  V ? � ? V � S LE @  d@W
W � 0

Density X ProbabilityLE V X 0  � � V � 0
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Probability Density Function - Intuition

VV − Y2 V + Y2

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
 5 ? � ? D = S LE @  d@T

U

 � = V =  V ? � ? V = S LE @  d@W
W

= 0

 � ≈ V ≈  V , Y
2 ? � ? V + Y

2 = S LE @  d@WQ[�
W�[�

≈ YLE(V)

What LE(@) measures: The local rate at which probability accumulates 



 � ≈ V
 � ≈ " ≈ YLE V

YLE " = LE V
LE " 21

Probability Density Function - Intuition

 � ≈ V
 � ≈ " = 2

V "

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
 5 ? � ? D = S LE @  d@T

U

 � = V =  V ? � ? V = S LE @  d@W
W

= 0

 � ≈ V ≈  V , Y
2 ? � ? V + Y

2 = S LE @  d@WQ[�
W�[�

≈ YLE(V)



Definition. A continuous random variable � is defined by a 
probability density function (PDF) LE: ℝ → ℝ, such that
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Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
 5 ? � ? D = S LE @  d@T

U
 � = V =  V ? � ? V = S LE @  d@W

W
= 0

 � ≈ V ≈  V , Y
2 ? � ? V + Y

2 = S LE @  d@WQ[�
W�[�

≈ YLE(V)
 � ≈ V
 � ≈ " ≈ YLE V

YLE " = LE V
LE "
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PDF of Uniform RV
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LE @ = \1, @ ∈ [0,1] 0, @ ∉ [0,1]

S LE @  d@QR
�R

= S LE @  d@�
*

= 1 ⋅ 1 = 1

0

1

� ∼ Unif(0,1) Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1



Probability of Event
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0

1

� ∼ Unif(0,1)

5 D

LE @ = \1, @ ∈ [0,1] 0, @ ∉ [0,1]

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
 5 ? � ? D = S LE @  d@T

U
1. If 0 ? 5 and 5 ? D ? 1 5 ? � ? D = D , 5
2. If 5 < 0 and 0 ? D ? 1 5 ? � ? D = D        
3. If 5 ≥ 0 and D > 1 5 ? � ? D = D , 5
4. If 5 < 0 and D > 1 5 ? � ? D = 1        

Poll: pollev/paulbeame028

A. All of them are correct
B. Only 1, 2, 4 are right 
C. Only 1 is right 
D. Only 1 and 2 are right 



Probability of Event
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0

1

� ∼ Unif(0,1)
LE @ = \1, @ ∈ [0,1] 0, @ ∉ [0,1]

Non-negativity: LE @ ≥ 0 for all @ ∈ ℝ
Normalization: O LE @  d@QR

�R = 1
 5 ? � ? D = S LE @  d@T

U

 � = V =  V ? � ? V = S LE @  d@W
W

= 0
 � ≈ V ≈ YLE V = Y
 � ≈ V
 � ≈ " ≈ YLE V

YLE " = LE V
LE "



PDF of Uniform RV
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LE @ = \2, @ ∈ B0,0.5C
 0, @ ∉ B0,0.5C

S LE @  d@
QR

�R
= S LE @  d@

�

*
= 2 ⋅ 0.5 = 1

0

2

� ∼ Unif�0,0.5�

Density X Probability

1

0.5

LE @ ≫ 1 is possible!

Probability on B0,0.5C accumulates at 
twice the rate compared to Unif�0,1�



Uniform Distribution
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LE @ � e 1D − 5 @ ∈ [5, DC0 else

S LE @  d@
QR

�R
= D − 5 1D − 5 � 1

0

1D − 5

� ∼ Unif�5, D�

5 D
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10

Li @ � \1, @ ∈ [0,1C 0, @ ∉ [0,1C

0

1

Example. : ∼ Unif�0,1�

10
0

Fi @ � �: ? @� � e0 @ ? 0? 0 ? @ ? 11 1 ? @

Probability Density Function

Cumulative Distribution Function 

1

@

@
@



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of � is FE 5 �  � ? 5 � O LE @  d@U
�R
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Therefore:  � ∈ [5, DC = FE D − FE�5�
By the fundamental theorem of Calculus LE @ = k

kl FE�@�

FE is monotone increasing, since LE @ ≥ 0. That is FE m ? FE n for m ? n
limU→�R FE 5 �  � ? −∞ � 0 limU→QR FE 5 �  � ? +∞ � 1



From Discrete to Continuous

Discrete Continuous

PMF/PDF �E @ =  � = @ LE @ X  � = @ = 0
CDF  FE @ = p �E�q�

r

s t l
FE @ = S LE q  nq

l

�R

Normalization p �E @ = 1
r

l
S LE @  n@ = 1

R

�R

Expectation u v � = p v @  �E�@�
r

l
u v � = S v @  LE @  n@

R

�R


