CSE 312 Foundations of Computing II

1

Lecture 13: Poisson wrap-up Continuous RV

Announcements

- PSet 4 due today
- PSet 3 returned yesterday
- Midterm general info is posted on Ed
 In your section. Closed book . No electronic aids.
- Practice midterm is posted
 - Has format you will see, including 2-page "cheat sheet".
 - Other practice materials linked also
- Midterm Q&A session next Tuesday 4pm on Zoom

Agenda

- Wrap-up of Poisson RVs <
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Poisson Random Variables

Definition. A Poisson random variable *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Disjoint time intervals independent
- Number of events happening at a time unit X is distributed according to Poi(λ)
- Poisson approximates Binomial when n is large,
 p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0, 1, 2, 3 ...,

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

5

Z = X + Y where $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ are independent

$$P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$$
 Law of total probability

$$= \sum_{j=0}^{z} P(X = j) P(Y = z - j) = \sum_{j=0}^{z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z - j!}$$
 Independence

$$= e^{-\lambda_{1} - \lambda_{2}} \left(\sum_{j=0}^{z} \cdot \frac{1}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{z} \frac{z!}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_{1} + \lambda_{2})^{z} \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!}$$

Binomial
Theorem

Proof

Don't be fooled by this picture: Poisson RVs are discrete

as $n \to \infty$, Binomial(n, $p = \lambda/n) \to poi(\lambda)$

7

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables 🗲
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

 $P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

P(T=0.5)=0

Bottom line

- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $P(T \in [0,1]) = 1$
 - $-P(T \in [a, b]) = b a$
 - ...
- How do we model the behavior of *T*?

```
First try: A discrete approximation
```

Recall: Cumulative Distribution Function (CDF)

A Discrete Approximation

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) \, dx = 1$ $P(a \le X \le b) = \int_a^b f_X(x) \, dx$ $P(X = y) = P(y \le X \le y) = \int_y^y f_X(x) \, dx = 0$ Density \ne Probability $f_X(y) \ne 0$ P(X = y) = 0

What $f_X(x)$ measures: The local *rate* at which probability accumulates

20

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $P(a \le X \le b) = \int_{-\infty}^{b} f_X(x) \, \mathrm{d}x$ $P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, dx = 0$ $P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$ $\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_Y(z)} = \frac{f_X(y)}{f_Y(z)}$

22

PDF of Uniform RV

 $X \sim \text{Unif}(0,1)$ **Non-negativity:** $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ **Normalization:** $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $f_X(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$ $\int_{-\infty}^{+\infty} f_X(x) \, \mathrm{d}x = \int_{0}^{1} f_X(x) \, \mathrm{d}x = 1 \cdot 1 = 1$ 0 1 24

Probability of Event

Probability of Event

Uniform Distribution

$X \sim \text{Unif}(a, b)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) \, dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx}F_X(x)$

Therefore: $P(X \in [a, b]) = F_X(b) - F_X(a)$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

$$\lim_{a\to-\infty} F_X(a) = P(X \le -\infty) = 0 \quad \lim_{a\to+\infty} F_X(a) = P(X \le +\infty) = 1$$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$