CSE 312 Foundations of Computing II

Lecture 14: Expectation \& Variance of Continuous RVs Exponential and Normal Distributions

Announcements

- See EdStem posts related to next week's midterm on Nov 2 in class:
- Midterm General Information
- Midterm Review (including Practice Midterm)
- Practice Midterm and other Solutions
- The class after ours has a midterm the same day so we will need to finish at 2:20 sharp.
- I talked with Prof. Anderson who offered to finish CSE 332 a few minutes early next Wednesday.
- Midterm Q\&A session next Tuesday 4pm on Zoom
$3-5 \quad 3 \% 2$

Review - Continuous RVs

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Density \neq Probability !

$$
\begin{aligned}
P(X \in[a, b]) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
\leftrightarrows & =F_{X}(b)-F_{X}(a)
\end{aligned}
$$

Cumulative Distribution Function (CDF).

$$
F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x
$$

$$
F_{X}(y)=P(X \leq y)
$$

Review: Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
\underline{0} & \text { else }
\end{array}\right.
$$

Review: From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\left(\int_{-\infty}^{x} f_{X}(t) d t\right.$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x}^{g} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$

Proofs follow same ideas as discrete case

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \mathrm{~d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

$$
E\left((x-\mathbb{E}(x))^{2}\right)
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

$$
f_{T}(x) \cdot x= \begin{cases}x, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\mathbb{E}[T]=\underbrace{\frac{1}{2} 1^{2}=\frac{1}{2}}
$$

Area of triangle

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x & x f_{x}(x)=\left(\begin{array}{cc}
\frac{x}{b-a} & x \in(a, b) \\
0 & e / / e
\end{array}\right. \\
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= & \left.\frac{1}{b-a}\left(\frac{x}{2}\right)\right|_{a} ^{2}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right)= \\
& =\frac{(b-a)(b+a)(b+b)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Uniform Density - Variance
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
$$

$$
\int x^{2} d x=\frac{x^{3}}{3}
$$

$$
b^{3}-a^{3}=(b-a)
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)} \quad b^{3}-a^{2}=(b-a)
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\left(\frac{a+b}{2}\right)^{2}
$$

$$
\begin{aligned}
& =\frac{\left(b^{2}+a b+a^{2}\right)}{3 \times 4}-\frac{\left(a^{2}+2 a b+b^{2}\right.}{4)} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12} \odot \frac{3 a^{2}+\frac{6 a b+3 b^{2}}{12}}{=}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection
- Rate of radioactive decay
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

$$
\begin{equation*}
P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!} \tag{Discrete}
\end{equation*}
$$

How long to wait until next event? Exponential density!
Let's define it and then derive it!

Exponential Density - Warmup

$$
X \sim \operatorname{Poi}(\lambda) \Rightarrow P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is the distribution of $Z=\#$ occurrences of event per t units of time?

$$
\mathbb{E}[Z]=t \lambda
$$

Z is independent over disjoint intervals

The Exponential PDF/CDF

$$
X \sim \operatorname{Poi}(\lambda) \Rightarrow P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently)
Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $Y \sim \underline{\operatorname{Exp}(\lambda)}$ be the time till the first event. We will compute
- Let $Z \sim \operatorname{Poi}(t \lambda)$ be the $\#$ of events in the first t units of time, for $t \geq 0$.
- $P(\underline{Y>t})=P($ no event in the first t units $)=P(Z=0)=e^{-t \lambda \frac{(t \lambda) 0^{0}}{0!}=1}=e^{-t \lambda}$
- $\left.\quad F_{Y}(t)=P(Y \leq t)=1-\underline{P(Y>t}\right)=1-\underline{e^{-t \lambda}}$
- $f_{Y}(t)=\frac{d}{d t} F_{Y}(t)=\lambda e^{-t \lambda}$

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
\begin{gathered}
\text { CDF: For } y \geq 0, \\
F_{X}(y)=1-e^{-\lambda y}
\end{gathered}
$$

Expectation

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x \\
& =\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \mathrm{~d} x \\
& =\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda}
\end{aligned}
$$

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
P(X>t)=e^{-t \lambda}
\end{gathered}
$$

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

$$
\operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Somewhat complex calculation use integral by parts

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

$$
P(X>s+t \mid X>s)=P(X>t) .
$$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when $s=0$.

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

$$
\longrightarrow P(X>t)=e^{-\lambda t}
$$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s=0$

Proof.

$$
\begin{gathered}
P(X>s+t \mid X>s) \\
=\frac{P(\{X>s+t\} \cap\{X>s\})}{P(X>s)} \\
=\frac{P(X>s+t) \beta}{P(X>s)} \\
=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P(X>t)
\end{gathered} \quad A
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins .
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \quad f_{x} \\
& P(10 \leq T \leq 20)=\int_{10}^{20} \underline{\frac{1}{10} e^{-\frac{x}{10}} d x} \\
& y=\frac{x}{10} \operatorname{so} d y=\frac{d x}{10} \\
& P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins .
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& \text { so } F_{T}(t)=1-e^{-\frac{t}{10}} \\
& \begin{aligned}
P(10 \leq T \leq 20) & =F_{T}(20)-F_{T}(10) \\
& =1-e^{-\frac{20}{10}}-\left(1-e^{-\frac{10}{10}}\right)=e^{-1}-e^{-2}
\end{aligned}
\end{aligned}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$\mathcal{N}(0,1)$.

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

Carl Friedrich Gauss

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof of expectation is easy because density curve is symmetric around μ,

$$
f_{X}(\mu-x)=f_{X}(\mu+x), \text { but proof for variance requires integration of } e^{-x^{2} / 2}
$$

We will see next time why the normal distribution is (in some sense) the most important distribution.

The Normal Distribution
Aka a "Bell Curve" (imprecise name)

