# **CSE 312**

# Foundations of Computing II

**Lecture 17: Continuity Correction & Distinct Elements** 

#### **Review CLT**

Theorem. (Central Limit Theorem) 
$$X_1, \dots, X_n$$
 i.i.d. with mean  $\mu$  and variance  $\sigma^2$ . Let  $Y_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma \sqrt{n}}$ . Then, 
$$\lim_{n \to \infty} Y_n \to \mathcal{N}(0,1)$$

# One main application:

Use Normal Distribution to Approximate  $Y_n$ No need to understand  $Y_n$ !!

# Agenda

- Continuity correction
- Application: Counting distinct elements

# Example – $Y_n$ is binomial

We understand binomial, so we can see how well approximation works

We flip n independent coins, heads with probability p = 0.75.

$$X = \# \text{ heads}$$
  $\mu = \mathbb{E}(X) = 0.75n$   $\sigma^2 = \text{Var}(X) = p(1-p)n = 0.1875n$ 

$$\mathbb{P}(X \le 0.7n)$$

| n    | exact      | $\mathcal{N}ig(m{\mu},m{\sigma^2}ig)$ approx |          |
|------|------------|----------------------------------------------|----------|
| 10   | 0.4744072  | 0.357500327                                  | E        |
| 20   | 0.38282735 | 0.302788308                                  | <u>_</u> |
| 50   | 0.25191886 | 0.207108089                                  | 1        |
| 100  | 0.14954105 | 0.124106539                                  | )<br>    |
| 200  | 0.06247223 | 0.051235217                                  |          |
| 1000 | 0.00019359 | 0.000130365                                  |          |

# **Example – Naive Approximation**

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact. 
$$\mathbb{P}(X \in \{20,21\}) = \begin{bmatrix} 40 \\ 20 \end{bmatrix} + \begin{bmatrix} 40 \\ 21 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{40} \approx \boxed{0.2448}$$

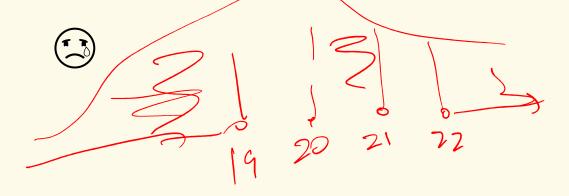
Approx.  $X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10$ 
 $\mathbb{P}(20 \le X \le 21) = \Phi\left(\frac{20 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21 - 20}{\sqrt{10}}\right)$ 
 $\approx \Phi\left(0 \le \frac{X - 20}{\sqrt{10}} \le 0.32\right)$ 
 $= \Phi(0.32) - \Phi(0) \approx \boxed{0.1241}$ 

# **Example – Even Worse Approximation**

Fair coin flipped (independently) 40 times. Probability of 20 heads?

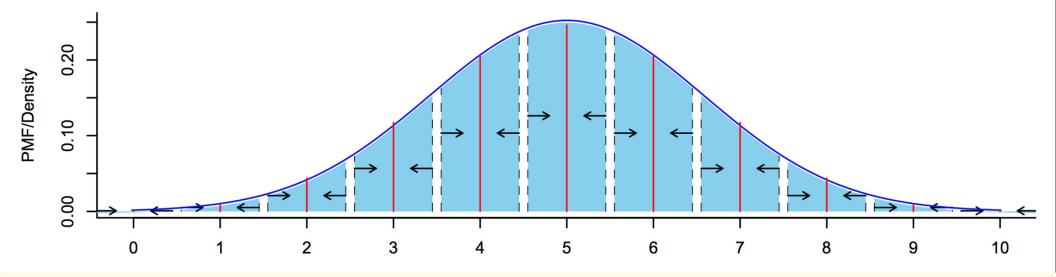
**Exact.** 
$$\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx \boxed{0.1254}$$

**Approx.** 
$$\mathbb{P}(20 \le X \le 20) = 0$$



# **Solution – Continuity Correction**

Probability estimate for i: Probability for all x that round to i!



To estimate probability that discrete RV lands in (integer) interval  $\{a, ..., b\}$ , compute probability continuous approximation lands in interval  $[a - \frac{1}{2}, b + \frac{1}{2}]$ 

# **Example – Continuity Correction**

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact. 
$$\mathbb{P}(X \in \{20,21\}) = \begin{bmatrix} 40 \\ 20 \end{bmatrix} + \begin{bmatrix} 40 \\ 21 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{40} \approx \boxed{0.2448}$$

Approx.  $X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10$ 
 $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)$ 
 $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)$ 
 $= \Phi(0.47) - \Phi(-0.16) \approx \boxed{0.2452}$ 

# **Example – Continuity Correction**

Fair coin flipped (independently) 40 times. Probability of 20 heads?

Exact. 
$$\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx 0.1254$$

Approx.  $\mathbb{P}(19.5 \le X \le 20.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)$ 

$$\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16\right)$$

$$= \Phi(0.16) - \Phi(-0.16) \approx 0.1272$$

# Agenda

- Continuity correction
- Application: Counting distinct elements

# Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
  - Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
  - We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

# Stream Model – Problem Setup

Input: sequence (aka. "stream") of N elements  $x_1, x_2, ..., x_N$  from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data ⇒ use minimal amount of storage while maintaining working "summary"

# What can we compute?

# Some functions are easy:

- Min
- Max
- Sum
- Average

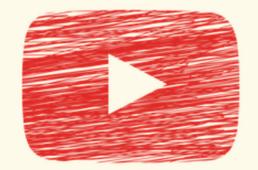
# **Today: Counting <u>distinct</u> elements**

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

#### **Application**

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!



# Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
  - Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
  - Advertising, marketing trends, etc.

# **Counting distinct elements**

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N=# of IDs in the stream = 11, m=# of distinct IDs in the stream = 5

Want to compute number of distinct IDs in the stream.

- <u>Naïve solution:</u> As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement:  $\Omega(m)$

YouTube Scenario: *m* is huge!

# **Counting distinct elements**

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

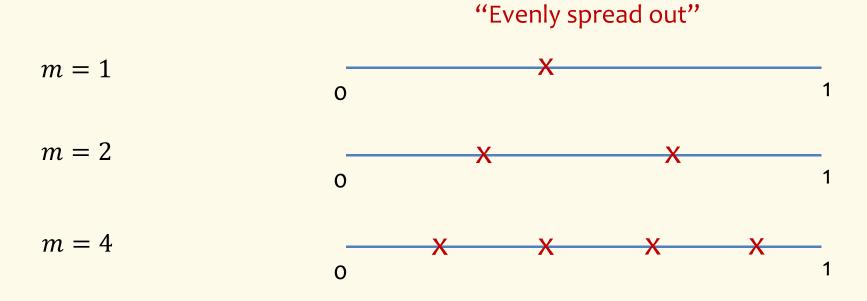
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

#### **Detour – I.I.D. Uniforms**

If  $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$  (i.i.d.) where do we expect the points to end up?



What is some intuition for this?

#### **Detour – I.I.D. Uniforms**

If  $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$  (i.i.d.) where do we expect the points to end up?

m=1 X  $Y_1$  has expected value 1/2 ... but probably isn't very close to the middle ... and  $Y_2$  is more likely to be in the bigger gap m=2 X X X  $Y_2$ 

#### Detour - Min of I.I.D. Uniforms

If  $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$  (i.i.d.) where do we expect the points to end up? e.g., what is  $\mathbb{E}[\min\{Y_1, \dots, Y_m\}]$ ?

**CDF:** Observe that  $\min\{Y_1, \dots, Y_m\} \ge y$  if and only if  $Y_1 \ge y, \dots, Y_m \ge y$  (Similar to Section 6)

$$P(\min\{Y_1, \dots, Y_m\} \ge y) = P(Y_1 \ge y, \dots, Y_m \ge y)$$

$$y \in [0,1]$$

$$= P(Y_1 \ge y) \dots P(Y_m \ge y)$$

$$= (1-y)^m$$

$$\Rightarrow P(\min\{Y_1, \dots, Y_m\} \le y) = 1 - (1-y)^m$$
20

#### Detour - Min of I.I.D. Uniforms

**Useful fact.** For any random variable  $\underline{Y}$  taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

Proof (Not covered)

$$\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \left( \int_0^x 1 \, \mathrm{d}y \right) \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \int_0^x f_Y(x) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \iint_{0 \le y \le x \le \infty} f_Y(x) = \int_0^\infty \int_y^\infty f_Y(x) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty P(Y \ge y) \, \mathrm{d}y$$

#### Detour – Min of I.I.D. Uniforms

 $Y_1, \dots, Y_m \sim \text{Unif}(0,1) \text{ (i.i.d.)}$   $Y = \min\{Y_1, \dots, Y_m\}$ 

**Useful fact.** For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

$$\int (-y)^m dy$$

$$= - (1-y)^{m+1}$$

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) dy = \int_0^1 (1 - y)^m dy$$

$$= -\frac{1}{m+1} (1 - y)^{m+1} \Big|_0^1 = 0 - \left(-\frac{1}{m+1}\right) = \frac{1}{m+1}$$

#### Detour – Min of I.I.D. Uniforms

If  $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$  (iid) where do we expect the points to end up?

In general, 
$$\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$$

$$\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$$

$$m = 1$$

$$0 \mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{3}$$

$$m = 2$$

$$0 \mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$$

# Distinct Elements – Hashing into [0, 1]

Hash function  $h: U \rightarrow (0,1]$ 

**Assumption:** For all  $x \in U$ ,  $h(x) \sim \text{Unif}(0,1)$  and mutually independent

$$x_1 = 5$$
$$h(5)$$

$$x_2 = 2$$

$$h(2)$$

$$x_3 = 27$$
  $x_4 = 35$   $x_5 = 4$   $h(27)$   $h(35)$   $h(4)$ 

$$x_4 = 35$$
$$h(35)$$

$$x_5 = 4$$
  $h(4)$ 

5 distinct elements

→ 5 i.i.d. RVs 
$$h(x_1), ..., h(x_5) \sim \text{Unif}(0,1)$$

$$\rightarrow \mathbb{E}[\min\{\underline{h(x_1), ..., h(x_5)}\}] = \frac{1}{5+1} = \frac{1}{6}$$

# Distinct Elements – Hashing into [0, 1]

#### Hash function $h: U \rightarrow [0,1]$

**Assumption:** For all  $x \in U$ ,  $h(x) \sim \text{Unif}(0,1)$  and mutually independent

$$x_1 = 5$$
  $x_2 = 2$   $x_3 = 27$   $x_4 = 5$   $x_5 = 4$   $h(5)$   $h(2)$   $h(2)$   $h(5)$   $h(4)$ 

#### 4 distinct elements

$$\Rightarrow$$
 4 i.i.d. RVs  $h(x_1), h(x_2), h(x_3), h(x_5) \sim \text{Unif}(0,1)$  and  $h(x_1) = h(x_4)$ 

# Distinct Elements – Hashing into [0, 1]

Hash function  $h: U \rightarrow [0,1]$ 

**Assumption:** For all  $x \in U$ ,  $h(x) \sim \text{Unif}(0,1)$  and mutually independent

 $x_1, x_2, \dots, x_N$  contains m distinct elements

$$h(x_1), h(x_2), \dots, h(x_N)$$
 contains  $m$  i.i.d. rvs  $\sim \text{Unif}(0,1)$ 

and 
$$N-m$$
 repeats

$$\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}] = \frac{1}{m+1} \iff m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - \frac{1}{m+1}$$

# The MinHash Algorithm – Idea

$$m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

- 1. Compute val =  $\min\{h(x_1), \dots, h(x_N)\}$
- 2. Assume that val  $\approx \mathbb{E}[\min\{h(x_1), ..., h(x_N)\}]$
- 3. Output round  $\left(\frac{1}{\text{val}} 1\right)$



# The MinHash Algorithm – Implementation

Algorithm MinHash
$$(x_1, x_2, ..., x_N)$$

val  $\leftarrow \infty$ 

for  $i = 1$  to  $N$  do

val  $\leftarrow \min\{\text{val}, h(x_i)\}$ 

Memory cost = just remember val (with sufficient precision)

val  $\leftarrow \min\{\text{val}, h(x_i)\}$ 

# MinHash Example

Stream: 13, 25, 19,

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

25,

Min

1 0-26 = 3.81-1 ~2.81 ~2.81

What does MinHash return?

Poll: pollev.com/paulbeameo28

- a. <u>1</u>
- b. 3
- c. 5
- d. No idea

# MinHash Example II

Output is 
$$\frac{1}{0.1} - 1 = 9$$

Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

# The MinHash Algorithm - Problem

# Algorithm MinHash $(x_1, x_2, ..., x_N)$ val $\leftarrow \infty$ for i = 1 to N do val $\leftarrow \min\{\text{val}, h(x_i)\}$

return round  $\left(\frac{1}{\text{val}} - 1\right)$ 

$$val = min\{h(x_1), ..., h(x_N)\} \qquad \mathbb{E}[val] = \frac{1}{m+1}$$

But, val is not  $\mathbb{E}[val]!$ How far is val from  $\mathbb{E}[val]$ ?

$$Var(val) \approx \frac{1}{(m+1)^2}$$

#### How can we reduce the variance?

#### Idea: Repetition to reduce variance!

Use k independent hash functions  $h^1, h^2, \dots h^k$ 



$$val_{1}, ..., val_{k} \leftarrow \infty$$

$$for i = 1 \text{ to } N \text{ do}$$

$$val_{1} \leftarrow \min\{val_{1}, h^{1}(x_{i})\}, ..., val_{k} \leftarrow \min\{val_{k}, h^{k}(x_{i})\}$$

$$val \leftarrow \frac{1}{k} \sum_{i=1}^{k} val_{i}$$

$$val_{i} \leftarrow val_{i} = val_{i}$$

$$val_{i} \leftarrow val_{i} = val_{i}$$

$$val_{i} \leftarrow val_{i} = val_{i}$$

$$Var(val) = \frac{1}{k} \frac{1}{(m+1)^2}$$

# MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
  - One also stores the element that has the minimum hash value for each of the k hash functions
    - Then, just given separate MinHashes for sets  $\underline{A}$  and  $\underline{B}$ , can also estimate
      - what fraction of  $A \cup B$  is in  $A \cap B$ ; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:
  - HyperLoglog even more space efficient but doesn't have the set combination properties of MinHash