CSE 312 Foundations of Computing II

Lecture 20: Tail Bounds Part II
Chebyshev and Chernoff Bounds

Agenda

- Covariance
- Markov's Inequality
- Chebyshev’s Inequality

Review Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$
\begin{gathered}
P(X \geq a) \leq b \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Review Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

(Alternative form) For any $k \geq 1$,

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Incredibly simplistic - only requires that the random variable is non-negative and only needs you to know expectation. You don't need to know anything else about the distribution of X.

Review Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Can we do better?

Review Example

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Suppose that the average number of ads you will see on a website is 25 . Compute an upper bound on the probability of seeing a website with 75 or more ads.

Where does that upper bound p lie?
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
c. $0.5 \leq p<0.75$
d. $0.75 \leq p$
e. Unable to compute
$X=R V$ for number of ads on a website visit

$$
\begin{aligned}
& \mathbb{E}[X]=25 \\
& P(X \geq 75)=P(X \geq 3 \cdot \mathbb{E}[X]) \leq \frac{1}{3}=p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: If this is all you know about } X \text { then you } \\
& \text { can't get a better bound: }
\end{aligned}
$$

can’t get a better bound:

Example RV X with $\mathbb{E}[X]=25$:

$$
\begin{array}{r}
P(X=0)=\frac{2}{3} \\
P(X=75)=\frac{1}{3}
\end{array}
$$

Example

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Suppose that the average number of ads you will see on a website is 25 . Compute an upper bound on the probability of seeing a website with 20 or more ads.

```
Poll: Where does that upper bound p lie?
pollev.com/paulbeame028
a. 0\leqp<0.25
b. }0.25\leqp<0.
c. }0.5\leqp<0.7
d. }0.75\leq
e. Unable to compute
```


Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof: Define $Z=X-\mathbb{E}[X]$. Then $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[Z^{2}\right]$.

$$
\begin{gathered}
P(|Z| \geq t)=P\left(Z^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[Z^{2}\right]}{t^{2}}=\frac{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}} \\
|Z| \geq t \text { iff } Z^{2} \geq t^{2} \quad \text { Markov's inequality }\left(Z^{2} \geq 0\right)
\end{gathered}
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

What is the probability that $X \geq 2 \mathbb{E}(X)=2 / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=1-p$
Better if $p>1 / 2$ ©

Example

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4 . Give an upper bound on the probability of seeing a website with 30 or more ads.

```
Poll: Where does that upper bound p lie?
pollev.com/paulbeame028
a. 0\leqp<0.25
b. 0.25\leqp<0.5
c. }0.5\leqp<0.7
d. 0.75 \leqp
e. Unable to compute
```


Chebyshev's Inequality - Repeated Experiments

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$X=$ \# of flips until n times "heads"
$X_{i}=$ \# of flips between $(i-1)$-st and i-th "heads" $\quad X=\sum_{i=1} X_{i}$
Note: X_{1}, \ldots, X_{n} are independent and geometric with parameter p
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p}$

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}
$$

Chebyshev's Inequality - Coin Flips

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}$
What is the probability that $X \geq 2 \mathbb{E}[X]=2 n / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=\frac{1-p}{n}$ Goes to zero as $n \rightarrow \infty \times$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

- Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

Brain Break

Agenda

- Markov's Inequality
- Chebyshev’s Inequality
- Chernoff-Hoeffding Bound

Chebyshev \& Binomial Distribution

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}} .
$$

Reformulated: $P(|X-\mu| \geq \delta \mu) \leq \frac{\sigma^{2}}{\delta^{2} \mu^{2}}$ where $\mu=\mathbb{E}[X]$ and $\sigma^{2}=\operatorname{Var}(X)$

If $X \sim \operatorname{Bin}(n, p)$, then $\mu=n p$ and $\sigma^{2}=n p(1-p)$

$$
P(|X-\mu| \geq \delta \mu) \leq \frac{n p(1-p)}{\delta^{2} n^{2} p^{2}}=\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}
$$

E.g., $\delta=0.1, p=0.5: \quad n=$ 200: $P(|X-\mu| \geq \delta \mu) \leq 0.5$

$$
n=800: P(|X-\mu| \geq \delta \mu) \leq 0.125
$$

How good is it?

Binomial with parameter $n=200, p=0.5$

$$
\text { Binomial with parameter } n=800, p=0.5
$$

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RVs, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then, for every $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}}
$$

Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent
$\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff-Hoeffding Bound - Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim \operatorname{Bin}(n, p)$. Let $\mu=n p=$ $\mathbb{E}[X]$. Then, for any $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Example:

$$
\begin{aligned}
& p=0.5 \\
& \delta=0.1
\end{aligned}
$$

	Chebyshev	
n	$\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^{2} n p}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Chernoff Bound - Example

$$
\mathbb{P}(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

```
Poll: pollev.com/paulbeame028
a. }\mp@subsup{e}{}{-n/64
b. }\mp@subsup{e}{}{-n/32
c. }\mp@subsup{e}{}{-n/16
d. }\mp@subsup{e}{}{-n/8
```

Chernoff vs Chebyshev - Summary

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any $t>0$:

- $P(X \geq(1+\delta) \cdot \mu)=P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right)$
- Then, apply Markov + independence:

$$
P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right) \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}}=\frac{\mathbb{E}\left[e^{t X_{1}}\right] \cdots \mathbb{E}\left[e^{t X_{n}}\right]}{e^{t(1+\delta) \mu}}
$$

- Find t minimizing the right-hand-side.

Next time

Examples using the Chernoff bound together with the simple "Union Bound"

Beginning "estimation"

