CSE 312 Foundations of Computing II

Lecture 20: Tail Bounds Part II Chebyshev and Chernoff Bounds

Agenda

- Covariance
- Markov's Inequality
- Chebyshev's Inequality

Review Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

 $P(X \ge a) \le b$ $P(|X - \mathbb{E}[X]| \ge a) \le b$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Review Markov's Inequality

Theorem. Let *X* be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

(Alternative form) For any $k \ge 1$, $P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.

Review Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Can we do better?

Review Example

Suppose that the average number of ads you will see on a website is 25. Compute an upper bound on the probability of seeing a website with 75 or more ads.

Where does that upper bound *p* lie?

- a. $0 \le p < 0.25$
- *b.* $0.25 \le p < 0.5$
- c. $0.5 \le p < 0.75$
- d. $0.75 \le p$
- e. Unable to compute

X = *RV* for number of ads on a website visit

 $\mathbb{E}[X] = 25$ $P(X \ge 75) = P(X \ge 3 \cdot \mathbb{E}[X]) \le \frac{1}{3} = p$

Note: If this is all you know about *X* then you can't get a better bound:

Example RV *X* with $\mathbb{E}[X] = 25$: $P(X = 0) = \frac{2}{3}$ $P(X = 75) = \frac{1}{3}$

6

 $P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Example

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Suppose that the average number of ads you will see on a website is 25. Compute an upper bound on the probability of seeing a website with 20 or more ads.

Poll: Where does that upper bound p lie? pollev.com/paulbeame028 *a.* $0 \le p < 0.25$ *b.* $0.25 \le p < 0.5$ c. $0.5 \le p < 0.75$ d. $0.75 \le p$ e. Unable to compute

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let *X* be a random variable. Then, for any t > 0, $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Proof: Define $Z = X - \mathbb{E}[X]$. Then $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[Z^2]$.

$$P(|Z| \ge t) = P(Z^2 \ge t^2) \le \frac{\mathbb{E}[Z^2]}{t^2} = \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\operatorname{Var}(X)}{t^2}$$
$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

Example – Geometric Random Variable

Let X be geometric RV with parameter p $P(X = i) = (1 - p)^{i-1}p$ $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$ What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$? <u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ <u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$ Better if p > 1/2 \bigcirc

Example

$$P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

```
Poll: Where does that upper bound p lie?

pollev.com/paulbeame028

a. 0 \le p < 0.25

b. 0.25 \le p < 0.5

c. 0.5 \le p < 0.75

d. 0.75 \le p

e. Unable to compute
```

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability <u>p</u>?

X = # of flips until n times "heads" $X_i = #$ of flips between (i - 1)-st and i-th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: X_1 , ..., X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

 $\underline{Markov: P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}}$ $\underline{Chebyshev: P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{Var(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}}{Goes \text{ to zero as } n \to \infty \text{ (S)}}$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

Brain Break

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound <

Chebyshev & Binomial Distribution

Reformulated:
$$P(|X - \mu| \ge \delta \mu) \le \frac{\sigma^2}{\delta^2 \mu^2}$$
 where $\mu = \mathbb{E}[X]$ and $\sigma^2 = Var(X)$

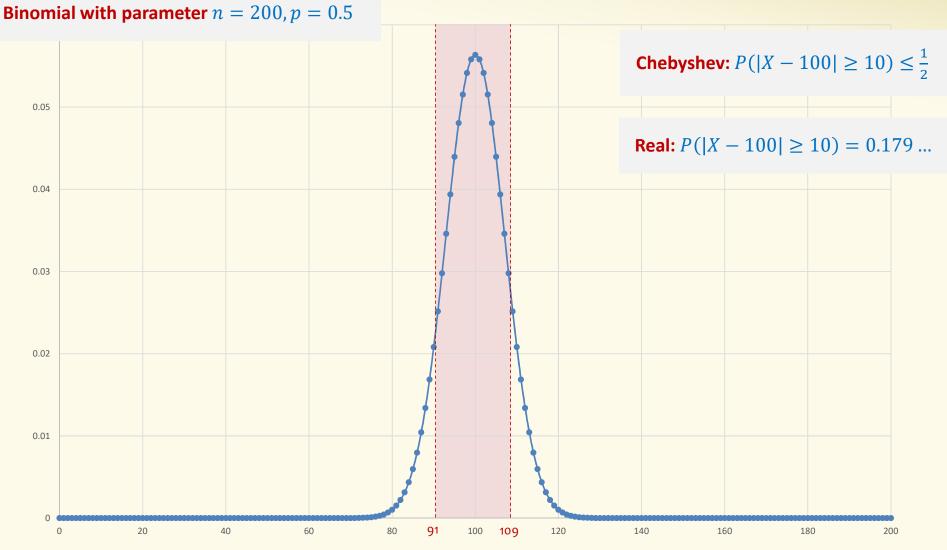
If $X \sim Bin(n, p)$, then $\mu = np$ and $\sigma^2 = np(1-p)$

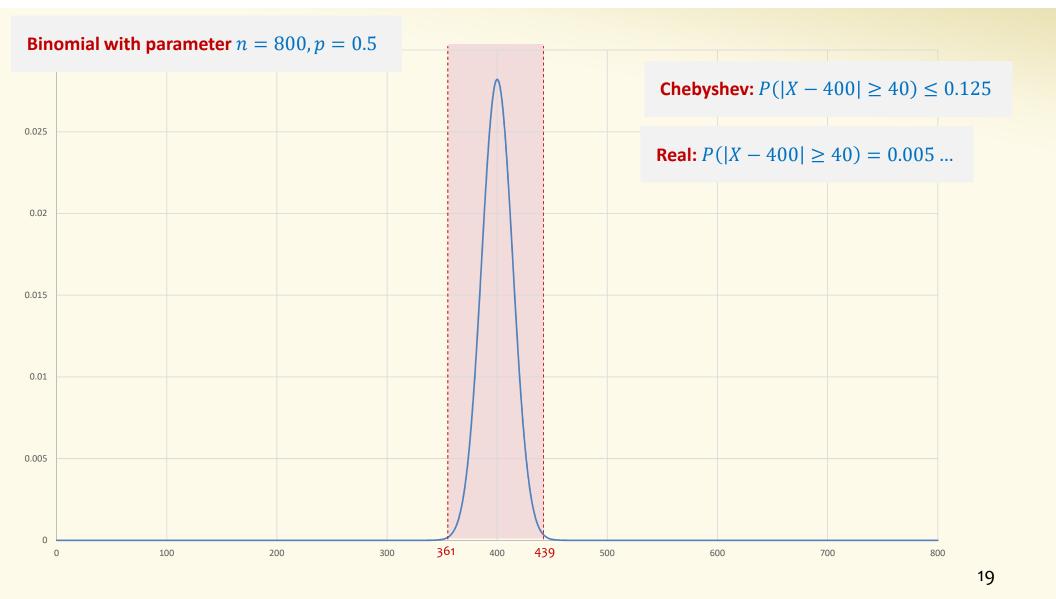
$$P(|X - \mu| \ge \delta\mu) \le \frac{np(1-p)}{\delta^2 n^2 p^2} = \frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$$

E.g., $\delta = 0.1, p = 0.5$: n = 200: $P(|X - \mu| \ge \delta\mu) \le 0.5$ n = 800: $P(|X - \mu| \ge \delta\mu) \le 0.125$

How good is it?

 $\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$





Chernoff-Hoeffding Bound

Theorem. Let $X = X_1 + \dots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}[X] = \mu$. Then, for every $\delta \in [0,1]$,

$$P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^2 \mu}{4}}.$$

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If $X \sim Bin(n, p)$, then $X = X_1 + \dots + X_n$ is a sum of independent {0,1}-Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim Bin(n, p)$. Let $\mu = np = \mathbb{E}[X]$. Then, for any $\delta \in [0,1]$,

$$P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}$$

Example: p = 0.5 $\delta = 0.1$

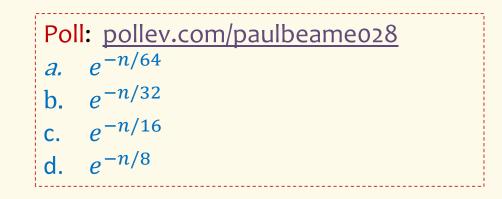
Chebyshev Chernoff

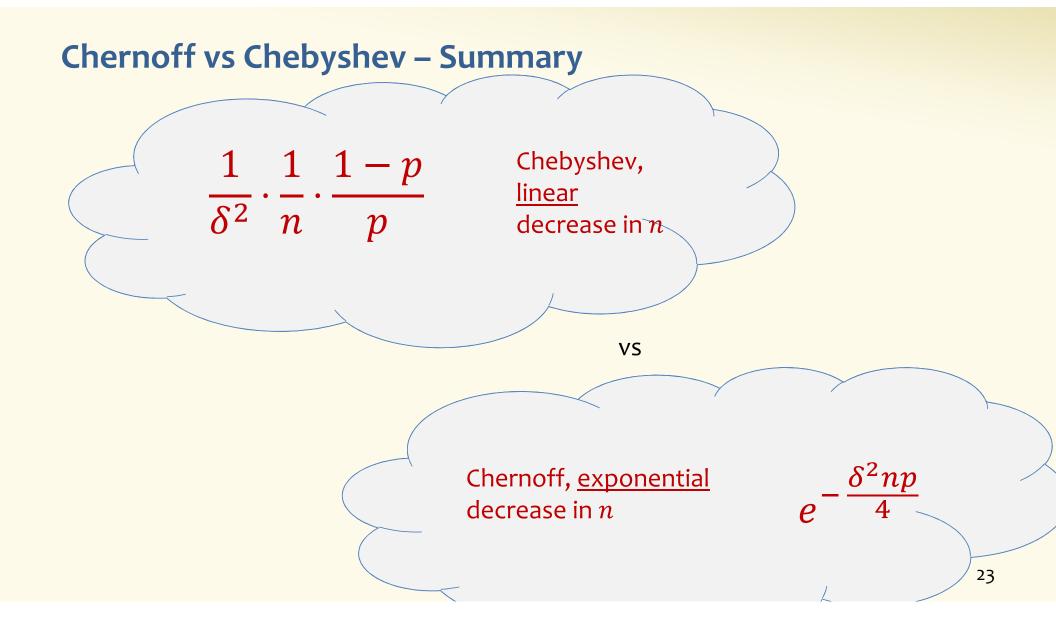
n	$\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^2 np}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Chernoff Bound – Example

$$\mathbb{P}(|X-\mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}$$

Alice tosses a fair coin *n* times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?





Why is the Chernoff Bound True?

Proof strategy (upper tail): For any t > 0:

- $P(X \ge (1 + \delta) \cdot \mu) = P(e^{tX} \ge e^{t(1 + \delta) \cdot \mu})$
- Then, apply Markov + independence: $P(e^{tX} \ge e^{t(1+\delta)\cdot\mu}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} = \frac{\mathbb{E}[e^{tX_1}]\cdots\mathbb{E}[e^{tX_n}]}{e^{t(1+\delta)\mu}}$
- Find *t* minimizing the right-hand-side.

Next time

Examples using the Chernoff bound together with the simple "Union Bound"

Beginning "estimation"