CSE 312 Foundations of Computing II

Lecture 21: Chernoff Bound \& Union Bound

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

$$
\begin{gathered}
P(X \geq a) \leq b \\
\text { or } \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

Theorem (Chebyshev's Inequality). Let X be a random variable. Then, for any $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RVs, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then...
for every $\delta \in[0,1], \quad P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}} \quad$ both tails
\qquad for every $\delta \geq 0$,
$P(X-\mu \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}} \quad$ right/upper tail

Herman Chernoff, Herman Rubin, Wassily Hoeffding
Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent $\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Review Chernoff-Hoeffding Bound - Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim \operatorname{Bin}(n, p)$. Let $\mu=n p=$ $\mathbb{E}[X]$. Then, for any $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Example:

$$
\begin{aligned}
& p=0.5 \\
& \delta=0.1
\end{aligned}
$$

Chebyshev		
n	$\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^{2} n p}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Review Chernoff Bound - Example

$$
\mathbb{P}(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}} .
$$

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

$$
\begin{aligned}
& p=1 / 2 \\
& \mu=n p=n / 2
\end{aligned}
$$

Target $\frac{3 n}{4}=\frac{n}{2}+\frac{n}{4}=\mu+\frac{1}{2} \mu$
Apply Chernoff bound with $\delta=\frac{1}{2}$
Bound is $e^{-\frac{\delta^{2} \mu}{4}}=e^{-\frac{\left(\frac{1}{2}\right)^{2}\left(\frac{n}{2}\right)}{4}}=e^{-\frac{n}{32}}$
a. $e^{-n / 64}$
b. $e^{-n / 32}$
c. $e^{-n / 16}$
d. $e^{-n / 8}$

Chernoff vs Chebyshev - Summary

Chernoff, exponential decrease in n

Why is the Chernoff Bound True?

х-

Proof strategy (upper tail): For any $s>0$:

- $P(X \geq(1+\delta) \cdot \mu)=P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right)$
- Then, apply Markov + independence:

$$
P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right) \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}}=\frac{\mathbb{E}\left[e^{t X_{1}}\right] \cdots \mathbb{E}\left[e^{t X_{n}}\right]}{e^{t(1+\delta) \mu}}
$$

- Find t minimizing the right-hand-side.

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Application - Distributed Load Balancing

We have k processors, and $n \gg k$ jobs.
We want to distribute jobs evenly across processors.
Strategy: Each job assigned to a randomly chosen processor! p
$X_{i}=$ load of processor $i \quad \underline{X_{i}} \sim \operatorname{Binomial}(n, 1 / k) \quad \mathbb{E}\left[X_{i}\right]=n / k$
$\underset{\sim}{X}=\max \left\{X_{1}, \ldots, X_{k}\right\}=$ max load of a processor
Question: How close is X to n / k ?

Distributed Load Balancing

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \not 1 / k^{4}
$$

Example:

- $n=10^{6} \gg k=1000$
- Perfect load balancing would give load $\left(\frac{n}{k}\right)=1000$ per server
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that server i processes more than 1332 jobs is at most "-over-one-trillion!"

Distributed Load Balancing $\operatorname{Po}[X \geqslant \mu+\delta \mu] \leq e^{-\frac{\delta^{2} \mu}{4}}$
Claim. (Load of single server)

$$
\sqrt{\pi / \pi} / \pi / n=\sqrt{\frac{k}{n}}
$$

$$
P(X_{i}>\underbrace{\frac{\pi}{k}}_{\mu}+4 \sqrt{\frac{n \ln k}{k}})=P\left(X_{i}>\frac{n}{k}\left(1+4 \sqrt{\frac{k \ln k}{n}}\right)\right) \leq 1 / k^{4} .
$$

Proof. Set $\mu=\mathbb{E}\left[X_{i}\right]=\frac{n}{k}$ and $\delta=4 \sqrt{\frac{k}{n} \ln k}$

$$
\frac{\Omega}{k} \underbrace{\left(\delta^{2}=4^{2} \cdot \frac{k \ln k}{n}\right.}_{\text {so } \delta^{2} \mu=4^{2} \ln k})
$$

What about the maximum load?

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

What about $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$?
Note: X_{1}, \ldots, X_{k} are not (mutually) independent!
In particular: $X_{1}+\cdots+X_{k}=n \quad$ When non-trivial outcome of one $R V$ can be derived from other RVs, they are non-independent.

Detour - Union Bound - A nice name for something you already know

Theorem (Union Bound). Let A_{1}, \ldots, A_{n} be arbitrary events. Then,

Detour - Union Bound - Example

$$
\begin{gathered}
\text { Ai } \\
\operatorname{Pr} s \text { server } 1 \text { fails] }
\end{gathered}=\frac{1}{1000}
$$

Suppose we have $N=200$ computers, where each one fails with probability 0.001 .
What is the probability that at least one server fails?
Let A_{i} be the event that server i fails.
Then event that at least one server fails is $\bigcup_{i=1}^{n} A_{i}$

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} \frac{P\left(A_{i}\right)}{\frac{1}{1000}}=\frac{0.001 N}{200}=0.2
$$

What about the maximum load?

havens

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

What about $X=\max \left\{X_{1}, \ldots, X_{[}\right\} ?$

$$
P\left(X \frac{n}{n}+4 \sqrt{\frac{n \ln k}{n}}\right)
$$

$$
P\left(X>\frac{n}{k}+4 \sqrt{n \ln k / k}\right)=P\left(\left\{X_{1}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\} \cup \cdots \cup\left\{X_{k}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\}\right)
$$

$$
\text { Union bound } \longrightarrow \leq P\left(X_{1}>\frac{n}{k}+4 \sqrt{\frac{n \text { 俞 } k}{k}}\right)+\cdots+P\left(X_{k}>\frac{n}{k}+4 \sqrt{k \ln k / k}\right)
$$

$$
\leq \frac{1}{k^{4}}+\cdots \overline{+\frac{1}{k^{4}}=k} \times \frac{1}{k^{4}}=\frac{1}{k^{3}}
$$

What about the maximum load?

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4} .
$$

Claim. (Max load) Let $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$.

$$
P\left(X>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{3} .
$$

Example:

- $n=10^{6} \gg k=1000$
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332
jobs is at most 1-over-one-billion!"

Using tail bounds

- Tail bounds are guarantees, unlike our use of CLT
- Often, we actually start with a target upper bound on failure probability
- In the load-balancing example, the value of δ in terms of n and k was worked out in order to get failure probability $\leq 1 / k^{(4)} 3$
- We didn't start out with this weird value
- See example in section and on homework
- We use these bounds to design (randomized) algorithms or analyze their guaranteed level of success.

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Probability vs Statistics

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

Polling Procedure

for $i=1, \ldots, n$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array} \quad x_{1}-x_{4}\right.
$$

Report our estimate of p :

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Recall Formalizing Polls

We assume that poll answers $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown p
Goal: Estimate p

We did this by computing $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Why is that a good estimate for p ?

More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing samples from
- We just don't know the parameters, e.g.
- the bias p of a random coin $\operatorname{Bernoulli}(p)$
- The arrival rate λ for the Poisson (λ) or Exponential (λ)
- The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data
- Next time: "best" = parameters that would be "most likely" to generate the observed samples
MLE maximum likelihood el tarnation

