CSE 312 Foundations of Computing II

1

Lecture 21: Chernoff Bound & Union Bound

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

$$P(X \ge a) \le b$$

or
$$P(|X - \mathbb{E}[X]| \ge a) \le b$$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

Theorem (Chebyshev's Inequality). Let *X* be a random variable. Then, for any t > 0,

 $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

3

Agenda

- Chernoff Bound 🛛 🗨
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Example: If $X \sim Bin(n, p)$, then $X = X_1 + \dots + X_n$ is a sum of independent {0,1}-Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Review Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim Bin(n, p)$. Let $\mu = np = \mathbb{E}[X]$. Then, for any $\delta \in [0,1]$,

$$P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}$$

Example: p = 0.5 $\delta = 0.1$

Chebyshev Chernoff

5/

n	$\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-rac{\delta^2 np}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}
		7

Review Chernoff Bound – Example

$$\mathbb{P}(|X-\mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$$

7

Alice tosses a fair coin *n* times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

Why is the Chernoff Bound True?

X-MZOM

Proof strategy (upper tail): For any s > 0:

• $P(X \ge (1+\delta) \cdot \mu) = P(e^{tX} \ge e^{t(1+\delta) \cdot \mu})$

 $P(e^{tX} \ge e^{t(1+\delta)\cdot\mu}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} = \frac{\mathbb{E}[e^{tX_1}]\cdots\mathbb{E}[e^{tX_n}]}{e^{t(1+\delta)\mu}}$

• Then, apply Markov + independence:

• Find *t* minimizing the right-hand-side.

Agenda

- Chernoff Bound
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Application – Distributed Load Balancing

We have $\frac{k}{k}$ processors, and $n \gg k$ jobs. We want to distribute jobs evenly across processors.

Strategy: Each job assigned to a randomly chosen processor!

 $X_{i} = \text{load of processor } i \qquad X_{i} \sim \text{Binomial}(n, 1/k) \qquad \mathbb{E}[X_{i}] = n/k$ $X = \max\{X_{1}, \dots, X_{k}\} = \max \text{ load of a processor}$ Question: How close is X to n/k?

Distributed Load Balancing Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^4.$

Example:

- $n = 10^6 \gg k = 1000$
- Perfect load balancing would give load $\frac{n}{k} = 1000$ per server
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that server *i* processes more than 1332 jobs is at most 1-over-one-trillion."

What about the maximum load?

Claim. (Load of single server) $P\left(X_{i} > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^{4}.$ What about $X = \max\{X_{1}, \dots, X_{k}\}$? Note: X_{1}, \dots, X_{k} are not (mutually) independent! In particular: $X_{1} + \dots + X_{k} = n$ When non-trivial outcome of one RV can be derived from other RVs, they are non-independent.

Detour – Union Bound – A nice name for something you already know

Detour – Union Bound - Example

Suppose we have N = 200 computers, where each one fails with probability 0.001.

What is the probability that at least one server fails? Let A_i be the event that server *i* fails.

Then event that at least one server fails is

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} \frac{P(A_{i})}{\prod_{i=1}^{N}} = \underbrace{0.001N}_{200} = 0.2$$

What about the maximum load?

$$k \text{ sumb}$$
Claim. (Load of single server)

$$P\left(X_{i} > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^{4}.$$
What about $X = \max\{X_{1}, ..., X_{k}\}$?

$$P\left(X > \frac{n}{k} + 4\sqrt{n \ln k / k}\right) = P\left(\{X_{1} > \frac{n}{k} + 4\sqrt{n \ln k / k}\} \cup \cdots \cup \{X_{k} > \frac{n}{k} + 4\sqrt{n \ln k / k}\}\right)$$

$$P\left(X > \frac{n}{k} + 4\sqrt{n \ln k / k}\right) = P\left(\{X_{1} > \frac{n}{k} + 4\sqrt{n \ln k / k}\} \cup \cdots \cup \{X_{k} > \frac{n}{k} + 4\sqrt{n \ln k / k}\}\right)$$
Union bound

$$\leq P\left(X_{1} > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) + \cdots + P\left(X_{k} > \frac{n}{k} + 4\sqrt{n \ln k / k}\right)$$

$$\leq \frac{1}{k^{4}} + \cdots + \frac{1}{k^{4}} = k \times \frac{1}{k^{4}} = \frac{1}{k^{3}}$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) \le 1/k^4.$

Claim. (Max load) Let $X = \max\{X_1, \dots, X_k\}$. $P\left(X > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le \frac{1/k^3}{k}.$

Example:

- $n=10^6\gg k=1000$
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332 jobs is at most 1-over-one-billion!"

Using tail bounds

- Tail bounds are guarantees, unlike our use of CLT
- Often, we actually start with a target upper bound on failure probability
 - In the load-balancing example, the value of δ in terms of n and k was worked out in order to get failure probability $\leq 1/k^4$
 - We didn't start out with this weird value
 - See example in section and on homework
- We use these bounds to design (randomized) algorithms or analyze their guaranteed level of success.

Agenda

- Chernoff Bound
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Probability vs Statistics

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n. **Problem:** We don't know p

Polling Procedure

for i = 1, ..., n:

- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

$$X_i = \begin{cases} 1, & \text{voting in favor} \\ 0, & \text{otherwise} \end{cases} \quad \textbf{x}_i - \textbf{x}_i \end{cases}$$

Report our estimate of *p*:

$$\overline{\bar{X}} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Recall Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown</u> p**Goal:** Estimate p

We did this by computing
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Why is that a good estimate for *p*?

More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data
 - Next time: "best" = parameters that would be "most likely" to generate the observed samples

MLE maximum likelihood estima.