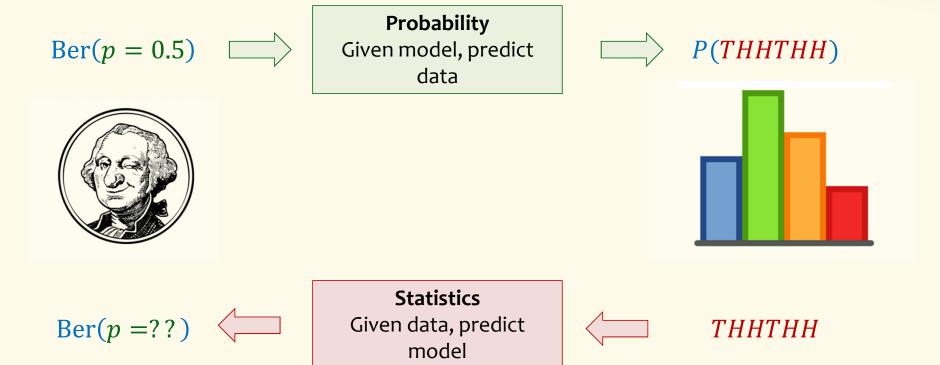
CSE 312


Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Recap Probability vs Statistics

Recap Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for unknown p

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

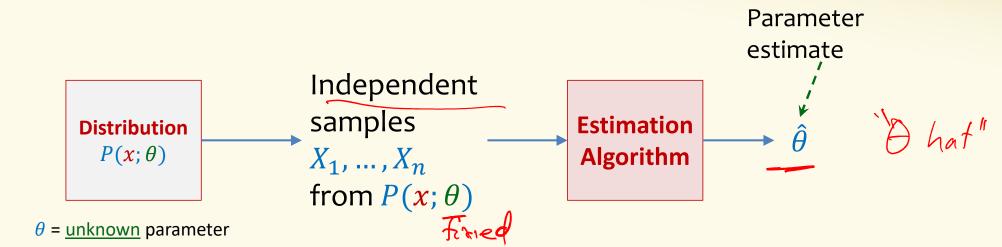
Recap More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ , described by a two-argument function


 $P(x;\theta) = \text{prob. of outcome } x \text{ when distribution has parameter } \theta$ [i.e., every θ defines a different distribution $\sum_{x} P(x; \theta) = 1$]

Examples

• "Bernoullis":
$$P(x; \theta = p) = \begin{cases} p & x = 1 \\ 1 - p & x = 0 \end{cases}$$

• "Bernoullis":
$$P(x; \theta = p) = \begin{cases} p & x = 1 \\ 1-p & x = 0 \end{cases}$$
• "Geometrics": $P(i; \theta = p) = (1-p)^{i-1}p$ for $i \in \mathbb{N}$

Statistics: Parameter Estimation – Workflow

Example: coin flip distribution with unknown θ = probability of heads

Observation: HTTHHHTHTHTTTTTHT

Goal: Estimate 9

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

TTHTHTTH

Given this data, what would you estimate p is?

Poll: pollev.com/paulbeameo28

- a. 1/2
- b. 5/8
- c. 3/8
- d. 1/4

3 heads out est of foose

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

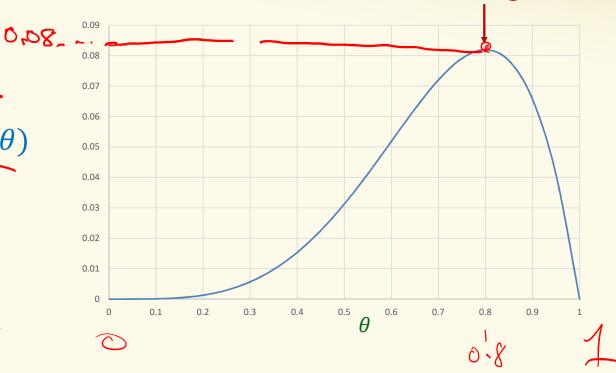
4/5

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Max Prob of seeing HHTHH)


Say we see outcome *HHTHH*.

$$\mathcal{L}(HHTHH \mid \theta) = \theta^4(1-\theta)$$

Probability of observing the outcome HHTHH if $\theta = \text{prob.}$ of heads.

For a fixed outcome HHTHH, this is a function of θ .

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n P(x_i; \theta)$$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, \dots, x_n \mid \hat{\theta})$ is maximized!

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(x_1, \dots, x_n | \theta)$$

Usually: Solve
$$\frac{\partial \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0 \text{ or } \frac{\partial \ln \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0 \text{ [+check it's a max!]}$$

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^n P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ
 - A function of x_1, \dots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> $x_1, ..., x_n$ and θ , but different role/interpretation

Example – Coin Flips

Observe: Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails

- i.e.,
$$n_H + n_T = n$$

Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \underline{\dots, x_n} | \underline{\theta}) = \underline{\theta^{n_H} (1 - \theta)^{n_T}}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n | \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

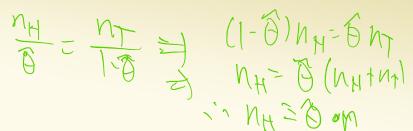
Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations

$$x_1, \ldots, x_n$$
 is

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$$


Useful log properties

$$\ln(ab) = \ln(a) + \ln(b)$$

$$\ln(a/b) = \ln(a) - \ln(b)$$

$$\ln(a^b) = b \cdot \ln(a)$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

General Recipe

- 1. **Input** Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1,, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\underline{\theta}}$ by setting derivative to $\underline{0}$ and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

1 = NT

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

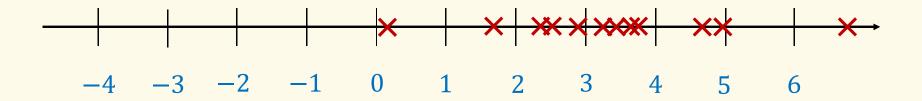
The Continuous Case

Given n (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of densities

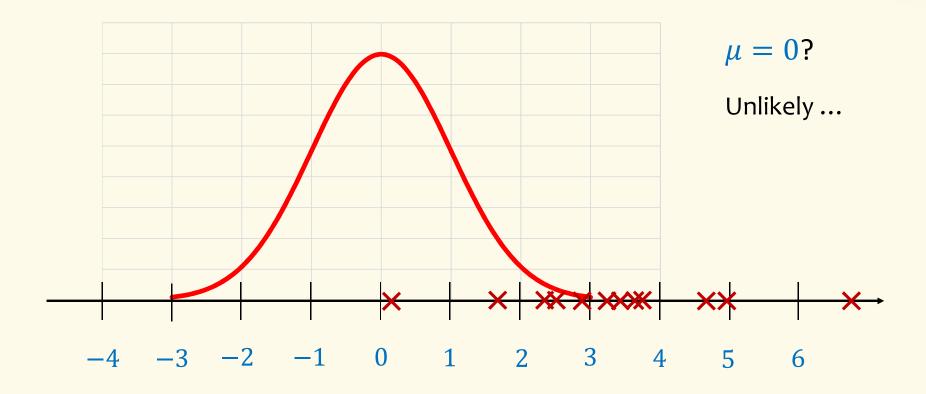
Trye

Definition. The **likelihood** of independent observations x_1, \dots, x_n is

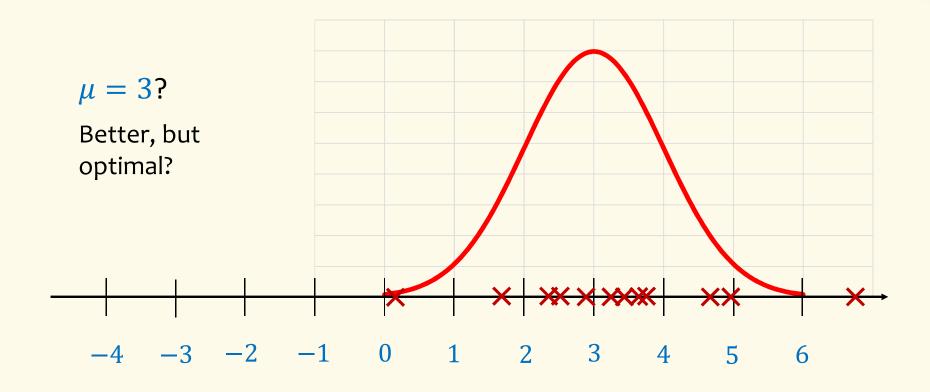
$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$$

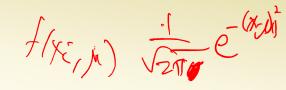

Density function! (Why?)

Why density?


- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

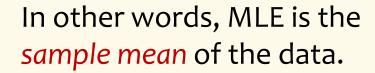
n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?


[i.e., we are given the <u>promise</u> that the variance is 1]


n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example – Gaussian Parameters


Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$ but

unknown mean μ

Goal: estimate θ = mean

Next time:

$$\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$$

General Recipe

- 1. Input Given n i.i.d. samples x_1, \dots, x_n from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$ For continuous $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.