## CSE 312 <br> Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

$$
\begin{aligned}
& \text { my } O H \text { today } \\
& 2=30-4: 20 \\
& \text { Also on zoon } \\
& \text { see link in Edstoms/Generol }
\end{aligned}
$$

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## Recap Probability vs Statistics



## Recap Formalizing Polls

We assume that poll answers $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown $p$

Goal: Estimate $p$

We did this by computing $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

## Recap More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing independent samples from
- We just don't know the parameters, e.g.
- the bias $p$ of a random coin $\operatorname{Bernoulli}(p)$
- The arrival rate $\lambda$ for the $\operatorname{Poisson}(\lambda)$ or Exponential $(\lambda)$
- The mean $\mu$ and variance $\sigma$ of a normal $\mathcal{N}(\mu, \sigma)$

```
7 T
```

- Goal: find the "best" parameters to fit the data


## Notation - Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter $\theta$, described by a two-argument function

$$
\begin{gathered}
P(x ; \theta)=\text { prob. of outcome } x \text { when distribution has parameter } \theta \\
\text { [i.e., every } \theta \text { defines a different distribution } \sum_{x} P(x ; \theta)=1 \text { ] }
\end{gathered}
$$

## Examples

- "Bernoullis": $P\left(x ; \theta=p_{\alpha}\right)= \begin{cases}\underline{p} & x=1 \\ \underline{1}-p & x=\underline{0}\end{cases}$
- "Geometrics": $P(i ; \theta=p)=(1-p)^{i-1} p \quad$ for $i \in \mathbb{N}$
$i \in\{0,1,2, \ldots-2=N$


## Statistics: Parameter Estimation - Workflow



Example: coin flip distribution with unknown $\theta=$ probability of heads

> Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate $\theta$

## Example

Suppose we have a mystery coin with some probability $p$ of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

## TTHTHTTH

Given this data, what would you estimate $p$ is?

[^0]\[

$$
\begin{aligned}
& 3 \text { heads } \\
& \text { ant et } \\
& 8 \text { tooses }
\end{aligned}
$$
\]

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## Likelihood

Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter $\theta$ (a.k.a. p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

## Likelihood

## Max Prob of seeing HHTHA

Say we see outcome HHTHH.
$\mathcal{L}($ HHTHH $\mid \underset{\sim}{\theta})=\theta^{4}(1-\theta)$ Probability of observing the outcome HHTHH if $\theta=$ prob. of heads.

For a fixed outcome HHTHH, this is a function of $\theta$.

Vmutheal(L)

## Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\underbrace{\mathcal{L}}_{\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)}=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data $x_{1}, \ldots, x_{n}$, find (̂) such that $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$



## Likelihood vs. Probability

- Fixed $\theta$ : probability $\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$ that dataset $x_{1}, \ldots, x_{n}$ is sampled by distribution with parameter $\theta$
- A function of $x_{1}, \ldots, x_{n}$
- Fixed $x_{1}, \ldots, x_{n}$ : likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ that parameter $\theta$ explains dataset $x_{1}, \ldots, x_{n}$.
- A function of $\theta$

These notions are the same number if we fix both $x_{1}, \ldots, x_{n}$ and $\theta$, but different role/interpretation

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
- \text { i.e., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \underline{\theta}\right)=\underline{\theta}^{n_{H}}\left(\underline{1-\theta)^{n_{T}}}\right.$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=? ? ?$

While it is possible to compute this derivative, it's not always nice since we are working with products.

## Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations
$x_{1}, \ldots, x_{n}$ is

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln P\left(x_{i} ; \theta\right)
$$

Useful log properties

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
\text { -i.e., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.

$$
\begin{align*}
& \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}} \\
& \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \operatorname{nn}+n_{T} \ln (1-\theta)-\frac{1}{1} \\
& i^{\prime} \cdot g^{\prime}(x) \\
& \int_{q} \frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \stackrel{\wedge}{=} n_{H}\left(\frac{1}{\theta}\right)-n_{T} \cdot \frac{1}{1-\theta} \\
& =¢ \text { Solving gives } \\
& \text { Want value } \frac{\hat{\theta}}{\hat{\gamma}} \text { of } \theta \text { set. } \frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=0 \\
& \gamma \hat{\theta}=\frac{n_{H}}{n}
\end{align*}
$$

## General Recipe



1. Input Given $n$ i.i.d. samples $x_{1}, \ldots, x_{n}$ from parametric model with parameter $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$

3. $\log$ Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\underline{\underline{\hat{\theta}}}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

## Brain Break



## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## The Continuous Case

Given $n$ (independent) samples $x_{1}, \ldots, x_{n}$ from (continuous) parametric model $f\left(x_{i} ; \theta\right)$ which is now a family of densities

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

## Why density?

- Density $\neq$ probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model

$$
\downarrow^{6}=1
$$

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?
[i.e., we are given the promise that the variance is 1]

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?


## Example - Gaussian Parameters

Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$ but unknown mean $\mu$

Goal: estimate $\theta=$ mean


Next time:
$\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n}$
In other words, MLE is the sample mean of the data.

## General Recipe

1. Input Given $n$ i.i.d. samples $x_{1}, \ldots, x_{n}$ from parametric model with parameter $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \underset{\sim}{f}\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.


[^0]:    Poll: pollev.com/paulbeame028
    a. $1 / 2$
    b. $5 / 8$
    c. $3 / 8$
    d. $1 / 4$

