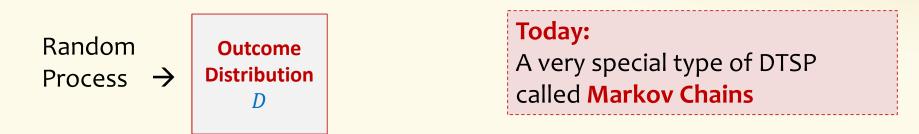
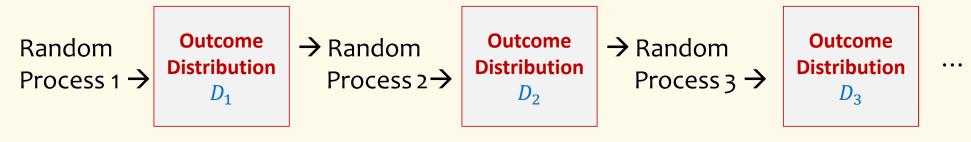
CSE 312 Foundations of Computing II

Lecture 24: Markov Chains

So far: probability for "single-shot" processes

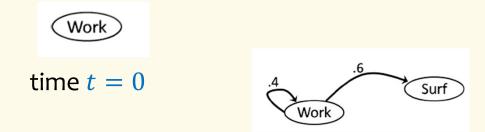


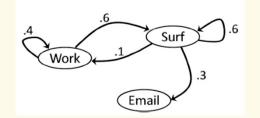
More generally: randomness can enter over many steps and depend on previous outcomes

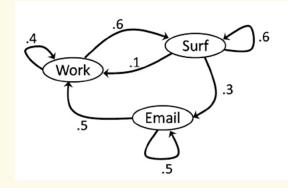


Definition. A discrete-time stochastic process (DTSP) is a sequence of random variables $X^{(0)}, X^{(1)}, X^{(2)}, \ldots$ where $X^{(t)}$ is the value at time t.

What happens when I start working on 312...







312 work habits

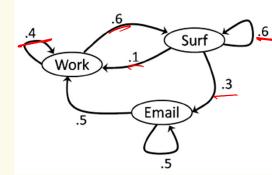
How do we interpret this diagram?

At each time step t

- I can be in one of 3 states
 - Work, Surf, Email

- the labels of out-edges of s give the probabilities of my moving to each of the states at time t + 1 (as well as staying the same)
 - so labels on out-edges sum to 1

e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at the next time step, but I will never be in state Surf in the next step.



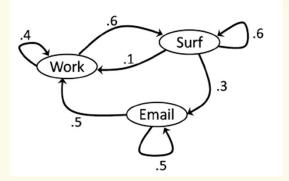
4

This kind of random process is called a Markov Chain

This diagram looks vaguely familiar if you took CSE 311 ...

Markov chains are a special kind of probabilistic (finite) automaton

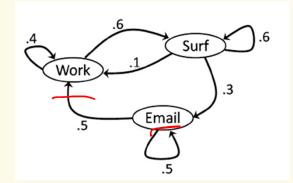
The diagrams look a bit like those of Deterministic Finite Automata (DFAs) you saw in 311 except that...



- There are no input symbols on the edges
 - Think of there being only one kind of input symbol "another tick of the clock" so no need to mark it on the edge
- They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the state they are currently in.

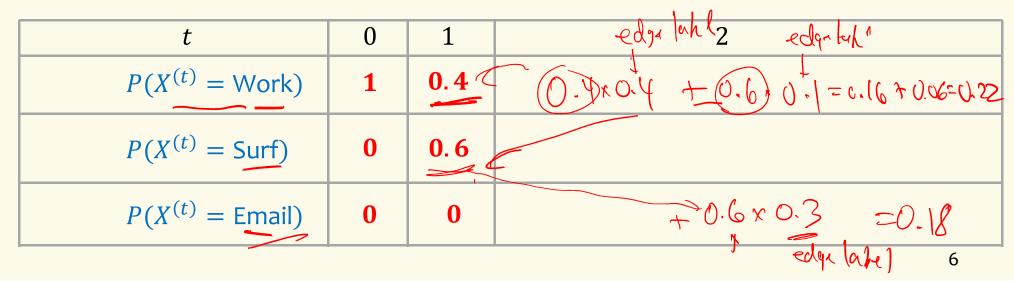
Many interesting questions about Markov Chains



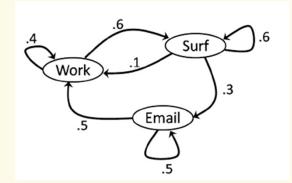
- 1. What is the probability that I am in state *s* at time 1?
- 2. What is the probability that I am in state *s* at time 2?

Define variable $X^{(t)}$ to be state I am in at time t

Given: In state Work at time t = 0



Many interesting questions about Markov Chains

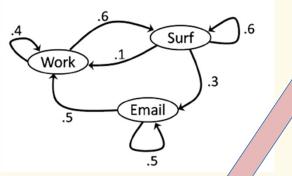


- 1. What is the probability that I am in state *s* at time 1?
- 2. What is the probability that I am in state *s* at time 2?

Define variable $X^{(t)}$ to be state I am in at time t

Given: In state Work at time t = 0

t	0	1	2
$q_W^{(t)} = P(X^{(t)} = Work)$	1	0.4	$= 0.4 \cdot 0.4 + 0.6 \cdot 0.1 = 0.16 + 0.06 = 0.22$
$q_S^{(t)} = P(X^{(t)} = \text{Surf})$	0	0.6	$= 0.4 \cdot 0.6 + 0.6 \cdot 0.6 = 0.24 + 0.36 = 0.60$
$q_E^{(t)} = P(X^{(t)} = \text{Email})$	0	0	$= 0.4 \cdot 0 + 0.6 \cdot 0.3 = 0 + 0.18 = 0.18$
	() 7

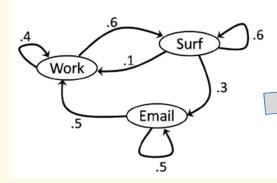


Write as a tuple $(q_W^{(t)}, q_S^{(t)}, q_E^{(t)})$ a.k.a. a row vector:

8

 $[q_W^{(t)}, q_S^{(t)}, q_E^{(t)}]$

t	0	1	2
$q_W^{(t)} = P(X^{(t)} = Work)$	1	0.4	$= 0.4 \cdot 0.4 + 0.6 \cdot 0.1 = 0.16 + 0.06 = 0.22$
$q_S^{(t)} = P(X^{(t)} = \text{Surf})$	0	0.6	$= 0.4 \cdot 0.6 + 0.6 \cdot 0.6 = 0.24 + 0.36 = 0.60$
$q_E^{(t)} = P(X^{(t)} = \text{Email})$	0	0	$= 0.4 \cdot 0 + 0.6 \cdot 0.3 = 0 + 0.18 = 0.18$



 $\begin{bmatrix} q_W^{(t)}, q_S^{(t)}, q_E^{(t)} \end{bmatrix} \bigvee \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0 & 0.5 \end{bmatrix}$

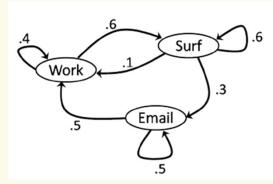
Write as a "transition probability matrix" M

one row/col per state. Row=now, Col=next

9

• each row sums to 1

t	0	1	2
$q_W^{(t)} = P(X^{(t)} = Work)$	1	0.4	$= \underbrace{0.4}_{\cdot} \cdot 0.4 + \underbrace{0.6}_{\cdot} \cdot 0.1 = 0.16 + 0.06 = \underbrace{0.22}_{\cdot}$
$q_S^{(t)} = P(X^{(t)} = \text{Surf})$	0	0.6	$= 0.4 \cdot 0.6 + 0.6 \cdot 0.6 = 0.24 + 0.36 = 0.60$
$q_E^{(t)} = P(X^{(t)} = \text{Email})$	0	0	$= 0.4 \cdot 0 + 0.6 \cdot 0.3 = 0 + 0.18 = 0.18$

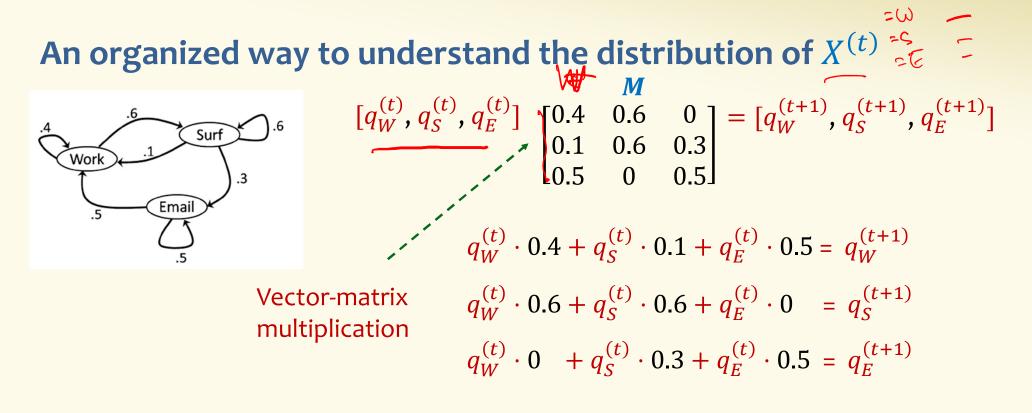


$$\begin{bmatrix} q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)} \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0 & 0.5 \end{bmatrix} = \begin{bmatrix} q_{W}^{(t+1)}, q_{S}^{(t+1)}, q_{E}^{(t+1)} \end{bmatrix}$$

$$q_{W}^{(1)} = \mathbf{0.4} \qquad q_{W}^{(2)} = \mathbf{0.4} \cdot \mathbf{0.4} + \mathbf{0.6} \cdot \mathbf{0.1} = \mathbf{0.16} + \mathbf{0.06} = \mathbf{0.22}$$

$$q_{S}^{(1)} = \mathbf{0.6} \qquad q_{S}^{(2)} = \mathbf{0.4} \cdot \mathbf{0.6} + \mathbf{0.6} \cdot \mathbf{0.6} = \mathbf{0.24} + \mathbf{0.36} = \mathbf{0.60}$$

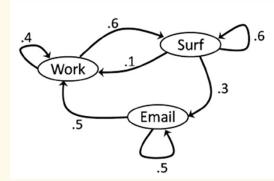
$$q_{E}^{(1)} = \mathbf{0} \qquad q_{E}^{(2)} = \mathbf{0.4} \cdot \mathbf{0} + \mathbf{0.6} \cdot \mathbf{0.3} = \mathbf{0} + \mathbf{0.18} = \mathbf{0.18}$$



$$q_W^{(1)} = \mathbf{0.4} \qquad q_W^{(2)} = \mathbf{0.4} \cdot 0.4 + \mathbf{0.6} \cdot 0.1 = 0.16 + 0.06 = \mathbf{0.22}$$

$$q_S^{(1)} = \mathbf{0.6} \qquad q_S^{(2)} = \mathbf{0.4} \cdot 0.6 + \mathbf{0.6} \cdot 0.6 = 0.24 + 0.36 = \mathbf{0.60}$$

$$q_E^{(1)} = \mathbf{0} \qquad q_E^{(2)} = \mathbf{0.4} \cdot 0 + \mathbf{0.6} \cdot 0.3 = 0 + 0.18 = \mathbf{0.18}$$



$$\begin{bmatrix} q_W^{(t)}, q_S^{(t)}, q_E^{(t)} \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0 & 0.5 \end{bmatrix} = \begin{bmatrix} q_W^{(t+1)}, q_S^{(t+1)}, q_E^{(t+1)} \end{bmatrix}$$

Vector-matrix multiplication

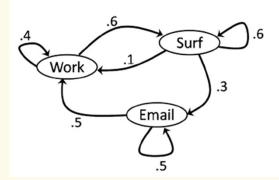
$$q_{W}^{(t)} \cdot 0.4 + q_{S}^{(t)} \cdot 0.1 + q_{E}^{(t)} \cdot 0.5 = q_{W}^{(t+1)}$$

$$q_{W}^{(t)} \cdot 0.6 + q_{S}^{(t)} \cdot 0.6 + q_{E}^{(t)} \cdot 0 = q_{S}^{(t+1)}$$

$$q_{W}^{(t)} \cdot 0 + q_{S}^{(t)} \cdot 0.3 + q_{E}^{(t)} \cdot 0.5 = q_{E}^{(t+1)}$$

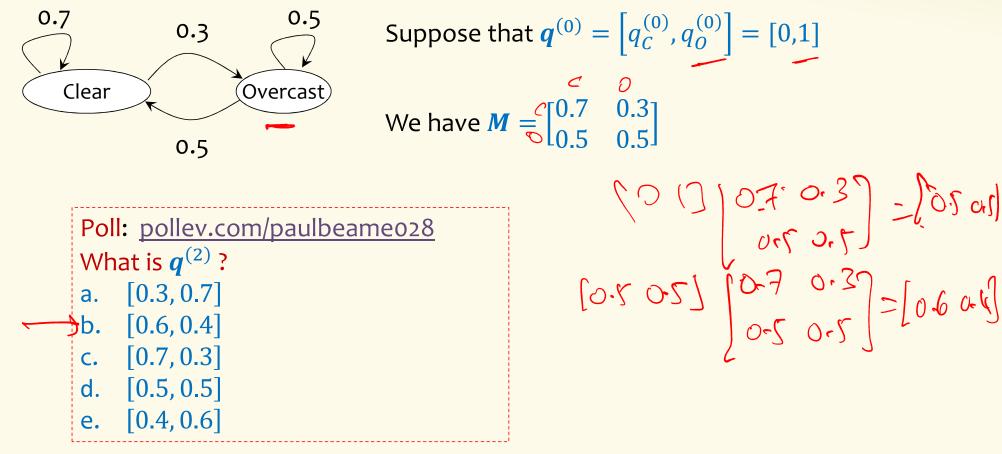
Write
$$q^{(t)} = [q_W^{(t)}, q_S^{(t)}, q_E^{(t)}]$$
 Then for all $t \ge 0$, $q^{(t+1)} = q^{(t)}M$
So $q^{(1)} = q^{(0)}M$
 $q^{(2)} = q^{(1)}M = (q^{(0)}M)M = q^{(0)}M^2$

By induction ... we can derive

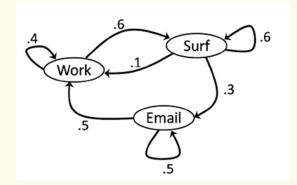


	M									
[0.4	0.6	[0								
0.1	0.6	0.3								
L0.5	0	0 0.3 0.5								
$q^{(t)} = q^{(0)}M^t$ for all $t \ge 0$										

Another example:



Many interesting questions about Markov Chains



Given: In state Work at time t = 0

- 1. What is the probability that I am in state *s* at time 1?
- 2. What is the probability that I am in state *s* at time 2?
- 3. What is the probability that I am in state *s* at some time *t* far in the future?

$$\boldsymbol{q}^{(t)} = \boldsymbol{q}^{(0)} \boldsymbol{M}^t$$
 for all $t \ge 0$

What does M^t look like for really big t?

M^t as t grows

$\boldsymbol{q}^{(t)} = \boldsymbol{q}^{(0)} \boldsymbol{M}^t$ for all $t \ge 0$

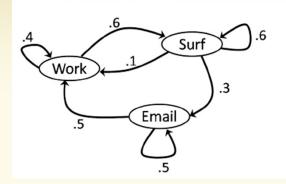
.4 Work	Email .5	.6 .3	М	$\begin{bmatrix} 0.4 & 0.6 \\ 0.1 & 0.6 \\ 0.5 & 0 \end{bmatrix}$		M ² W S E	W $\begin{pmatrix} .22\\ .25\\ .45 \end{pmatrix}$	$\begin{array}{ccc} S & E \\ .6 & .18 \\ .42 & .33 \\ .3 & .25 \end{array}$	$\begin{pmatrix} M^3 \\ W \\ S \\ E \end{pmatrix}$	W (.238 (.307 (.335)	S .492 .402 .450	E .270 .291 .215
M^{10} W $W = \begin{pmatrix} .294 \\ .294 \\ .294 \\ .294 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E .2648 .2648 .2648	M ³⁰ W S E	W (.2941176 .2941176 .2941176 .2941176	4706 .	S $4411764'$ $4411764'$ $4411764'$ $4411764'$	7058	E .2647058 .2647058 .2647058	8235			
S .2	W 94117647 94117647 94117647	7068823	.441176	<i>S</i> 470588235 470588235 470588235	.2647	E 7058823 7058823 7058823	52941		What say al			

What does this say about $q^{(t)} = q^{(0)}M^t$?

- Note that no matter what probability distribution $q^{(0)}$ is ... $q^{(0)}M^t$ is just a weighted average of the rows of M^t
- If every row of M^t were exactly the same ... that would mean that q⁽⁰⁾ M^t would be equal to the common row
 So q^(t) wouldn't depend on q⁽⁰⁾
- The rows aren't exactly the same but they are very close $-So q^{(t)}$ barely depends on $q^{(0)}$ after very few steps

Observation

If $q^{(t+1)} = q^{(t)}$ then it will never change again!



Called a **stationary distribution** and has a special name $\pi = (\pi_W, \pi_S, \pi_E)$

Solution to
$$\pi = \pi M$$

Solving for Stationary Distribution

$$M = \begin{pmatrix} 4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

$$M = \begin{pmatrix} 4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

$$M = \pi M, \text{ where } \pi = (\pi_W, \pi_S, \pi_E)$$

$$\pi_W + \pi_S + \pi_E = 1$$

$$M = \frac{10}{34}, \pi_S = \frac{15}{34}, \pi_E = \frac{9}{34}$$

$$M = \frac{10}{34}, \pi_S = \frac{15}{34}, \pi_E = \frac{9}{34}$$

As $t \to \infty$, $q^{(t)} \to \pi$ no matter what distribution $q^{(0)}$ is !!

Markov Chains in general

- A set of *n* states {1, 2, 3, ... *n*}
- The state at time t is denoted by $X^{(t)}$
- A transition matrix *M*, dimension $n \times n$ $M_{ij} = P(X^{(t+1)} = j \mid X^{(t)} = i)$
- $q^{(t)} = (q_1^{(t)}, q_2^{(t)}, \dots, q_n^{(t)})$ where $q_i^{(t)} = P(X^{(t)} = i)$
- Transition: LTP $\Rightarrow q^{(t+1)} = q^{(t)} M$ so $q^{(t)} = q^{(0)} M^t$
- A **stationary distribution** *π* is the solution to:

 $\pi = \pi M$, normalized so that $\sum_{i \in [n]} \pi_i = 1$

