
CSE 312

Foundations of Computing II

Lecture 27: Random Sampling
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Random sampling

• We have seen a number of probability distributions

– some defined by intuitive natural random processes

– other useful distributions that seem more exotic

• We want to generate samples from these distributions

– For simulating natural processes

– For our randomized algorithms to behave well

• Polling

• Bloom filters

• MinHash

• PageRank

• Differential Privacy

• …   (Cryptography)
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Random Number Generation

• In Python, like many programming languages, there is a single 
core random generator random()for distribution ���� 0,1

– Actually generates 53-bit precision floats in  �0.0, 1.0


– Based on Mersenne Twister mod 219937 � 1

– Only pseudorandom

• Actually deterministic except for any randomness in initial “seed”

• Good enough for many applications

• (but not good enough for cryptography)
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24th Mersenne Prime

23rd Mersenne Prime

Assume that this really is ���� 0,1  … What about other distributions?



Uniformly random integer � in {0, … , � � 1}?

randrange(n)
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Actually floor(n*random()) 
with a small correction …



Generating  ∼ !"#$"%&�'(1/2)?

From the original definition…

Repeat fair coin flip until heads:

z=1

while(randrange(2)!=1)

z=z+1
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Drawbacks of this method?

– Time taken depends on the value of  

– If value of  is � then it takes � calls 
randrange(2)

• That implies � calls to random()

• Such calls aren’t cheap

– May allow timing attacks by others 
observing time taken

Is there a better way?



Generating  ∼ !"#$"%&�'(1/2)?

From a single call to random():

• All we need is )  = � = 1/2+
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 = ⌈log2(1/�)⌉ z=ceiling(log(1/random(),2))

or better
z=ceiling(log2(1/random()))



Generating  ∼ !"#$"%&�'(4)?

From a single call to random():

• All we need is )  = � = 1 − 4 +,- 4 = 1 − 4 +,- − 1 − 4 +
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0 11 − 41 − 4 21 − 4 +,-1 − 4 +

12…�
� ∼ Unif(0,1)

 = ⌈log-,5 �⌉ = ⌈log-/(-,5)(1/�)⌉

z=ceiling(log(1/random(),1/(1-p)))



Agenda

• Sampling basics

• Rejection sampling

• Reservoir sampling
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Rejection Sampling

• Method for sampling from distribution � with pdf function � that you can 
evaluate given that you:

– Can sample from “candidate” simpler distribution 6 with pdf function 7 you 
can evaluate such that 7(8) > 0 whenever �(8) > 0 

• More precisely, for some :, we have � 8 ≤ : ⋅ 7(8) for every 8

– Can sample from Unif(0,1)
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Rejection Sampling

1. Sample 8 according to candidate 
distribution 6 with pdf 7

2. Choose � ∼ Unif 0,1

3. If � ≤
= >

?⋅@(>)
return 8

else go to step 1 and repeat
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Claim:  8 is distributed according to pdf �

Idea:   Equivalent to generating a 
uniform point under : ⋅ 7 curve and 
accepting if point is under � curve



Rejection Sampling

What is the probability we get a sample in a round?
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Unif(0,1) distribution
� is a pdf

A[# rounds]  =  :

by LTP



Rejection Sampling – Examples of candidate distributions

• On a bounded domain

– Unif(M, N) as scaled and shifted version of Unif(0,1)

• On non-negative reals

– e.g. 6 distributed as continuous extension of geometric 
distribution

•  Geometric 4 − Unif(0,1)
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Agenda

• Sampling basics

• Rejection sampling

• Reservoir sampling
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Reservoir Sampling Algorithms

Goal: Choose a uniform random sample T of U
items from a stream 8-, 82, 8V, … , 8W
where � is not known in advance

Not enough space to store stream:  Only U elements plus X(1)

Easy if � is known in advance but we usually don’t know it.

Useful for many applications
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Basic Reservoir Sampling Algorithm

Goal:  At each step � ≥ U array T is a uniformly random sample of 
8-, 82, 8V, … , 8+

Initialize:  T 1 , … , T U ← 8-, … , 8Z

Step �: Choose [ uniformly from {1, … , �}

If [ ≤ U then T [ ← 8+

Why is this correct? 
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Basic Reservoir Sampling Algorithm

Initialize:  T 1 , … , T U ← 8-, … , 8Z

Step �: Choose [ uniformly from {1, … , �}

If [ ≤ U then T [ ← 8+

Claim:  For each � ≥ U and every ℓ ≤ �, ) 8ℓ ∈ T + = U/�

Proof:  Base case (� = U): trivial

IH: Assume for every ℓ ≤ � − 1, ) 8ℓ ∈ T +,- = U/(� − 1).

IS: Case ℓ = � :   By definition ) 8ℓ ∈ T + = ) [ ≤ U = U/�.

Case ℓ < � : ) 8ℓ ∈ T + = ) 8ℓ ∈ T +,- , [ ≠ ℓ

                                                       = ) 8ℓ ∈ T +,-   ) [ ≠ ℓ =
Z

+,-
⋅

+,-

+
= U/�
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Write for T + for T after step �



Reservoir Sampling

Only drawback of basic algorithm:

– Need to call random() � times, one per element of the stream

– Each call is expensive

It turns out that we can do it with only 3 calls per update to T!
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Reservoir Sampling:  Towards a more clever algorithm

• 1st idea: an alternative algorithm:

– For each � independently, choose a `+ ∼ Unif(0,1).

– At each step, keep the 8a with the U smallest à values

This seems worse; how can it help!

• 2nd idea: Let b = largest à for [ ∈ T +,-

– 8+ ∈ T + iff  `+ ≤ b

• 3rd idea: Conditioned on “b = largest à for [ ∈ T +,- and `+ ≤ b”

– The à for [ ∈ T + are independent samples from [0, b]
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Equivalent to `+ < b.

4th idea: We only need to 

replace a  random elt of T +,-



Reservoir Sampling:  Towards a more clever algorithm

Modified Algorithm:

– Initialize T = 8-, … , 8Z ; set b = max `-, … `Z for à ∼ Unif(0,1)

– Step �:  Choose `+ ∼ Unif 0,1
if `+ ≤ b then replace a random elt of T with 8+

set b = max `-′, … `Z′ for à
f ∼ Unif 0, b

• 2nd idea: Let b = largest à for [ ∈ T +,-

– 8+ ∈ T + iff  `+ ≤ b

• 3rd idea: Conditioned on “b = largest à for [ ∈ T +,- and `+ ≤ b”

– The à for [ ∈ T + are independent samples from [0, b]
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4th idea: We only need to 

replace a  random elt of T +,-



Better Reservoir Sampling:  Two final ideas

Modified Algorithm:

– Initialize T = 8-, … , 8Z ; set b = max `-, … `Z for à ∼ Unif(0,1)

– Step �:  Choose `+ ∼ Unif 0,1
if `+ ≤ b then replace a random elt of T with 8+

set b = max `-′, … `Z′ for à
f ∼ Unif 0, b
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For fixed b, the indicator r.v. that Step � involves replacement is Bernoulli(b) so
distribution of # of steps until next replacement is Geometric(b).

max{`-
f , … , `Z

f } for à
f ∈ Unif 0, b is distributed as b ⋅ `-/Z for ` ∼ Unif(0,1)



Better Reservoir Sampling:  Final Algorithm

Optimal Reservoir Sampling:

– Initialize T = 8-, … , 8Z ; set � = U; b = `-/Z for ` ∼ Unif(0,1)

– Loop

• Choose [ ∼ Geometric b using single call to random()

• Set � = � + [ skipping any elements in between

• Replace a random elt of T with 8+

• Set b = b ⋅ `-/Z for ` ∼ Unif 0,1
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This is typical of randomized algorithms

• Ideas for good algorithms touch on many different topics 
we’ve covered in CSE 312

• Even very good algorithms can be improved with more 
insight

• This isn’t even all there is to reservoir sampling …

– Non-uniform sampling based on weights for elements
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