CSE 312 Foundations of Computing II

Y

1

Lecture 27: Random Sampling

Random sampling

- We have seen a number of probability distributions
 - some defined by intuitive natural random processes
 - other useful distributions that seem more exotic
- We want to generate **samples** from these distributions
 - For simulating natural processes 🤇 🦟
 - For our randomized algorithms to behave well
 - Polling
 - Bloom filters
 - MinHash
 - PageRank
 - Differential Privacy
 - ... (Cryptography)

Random Number Generation

- In Python, like many programming languages, there is a single core random generator random () for distribution Unif (0,1)
 - Actually generates 53-bit precision floats in [0.0, 1.0) 23rd Mersenne Prime
 - Based on Mersenne Twister mod 2¹⁹⁹³⁷– 1

24th Mersenne Prime

- Only pseudorandom
 - Actually deterministic except for any randomness in initial "seed"
 - Good enough for many applications
 - (but not good enough for cryptography)

Assume that this really is Unif(0,1) ... What about other distributions?

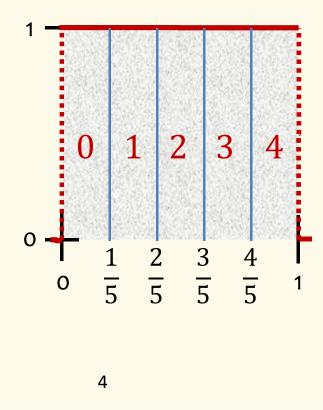
Uniformly random integer X in $\{0, ..., n-1\}$?

randrange(n)

 $X \leftarrow \lfloor nU \rfloor$

Actually **floor (n*random ())** with a small correction ...

$U \sim \text{Unif}(0,1)$



Generating $Z \sim Geometric(1/2)$?

From the original definition...

Repeat fair coin flip until heads:

z=1

while(randrange(2)!=1) z=z+1

Drawbacks of this method?

- Time taken depends on the value of Z
- If value of Z is i then it takes i calls
 randrange (2)
 - That implies *i* calls to **random()**
 - Such calls aren't cheap
- May allow timing attacks by others observing time taken

Is there a better way?

Generating $Z \sim Geometric(1/2)$?

From a single call to **random()**:

• All we need is $P(Z = i) = 1/2^{i}$ $i \qquad \dots \qquad 2$ $\downarrow \downarrow \downarrow \downarrow \qquad \downarrow \qquad \qquad 1$ $0 \quad \frac{1}{2^{i}} \quad \frac{1}{2^{i-1}} \quad \frac{1}{4} \qquad \qquad \frac{1}{2}$ $Z = [\log_{2}(1/U)]$ $Z = [\log_{2}(1/U)]$ $Z = [\log_{2}(1/U)]$

z=ceiling(log2(1/random()))

Generating $Z \sim Geometric(p)$?

From a single call to **random()**:

• All we need is
$$P(Z = i) = (1 - p)^{i-1} p = (1 - p)^{i-1} - (1 - p)^{i}$$

 i
 i
 0
 $(1 - p)^{i}$
 $(1 - p)^{i-1}$
 $(1 - p)^{2}$
 $1 - p$
 $1 - p$
 $1 - p$
 1

 $Z = [\log_{1-p} U] = [\log_{1/(1-p)}(1/U)]$ z=ceiling(log(1/random(),1/(1-p)))

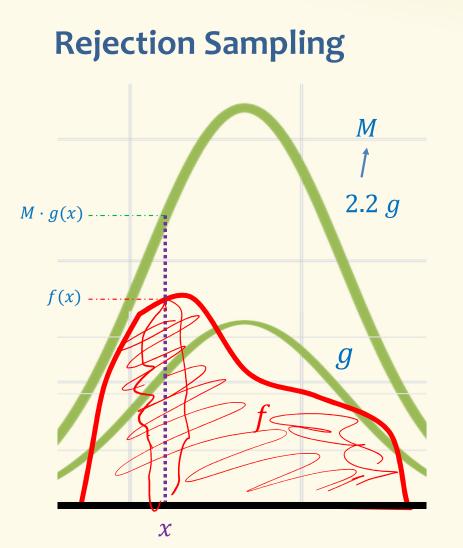
Agenda

- Sampling basics
- Rejection sampling <
- Reservoir sampling

Rejection Sampling

- Method for sampling from distribution X with pdf function f that you can evaluate given that you:
 - Can sample from "candidate" simpler distribution Y with pdf function g you can evaluate such that g(x) > 0 whenever f(x) > 0
 - More precisely, for some M, we have $f(x) \le M \cdot g(x)$ for every x

— Can sample from Unif(0,1)



$$U' \in Unif(O, Mg(x))$$

 $f(u' \leq f(x) the$

1. Sample x according to candidate distribution Y with pdf g

2. Choose
$$U \sim \text{Unif}(0,1)$$

3. If
$$U \leq \frac{f(x)}{M \cdot g(x)}$$
 return x
else go to step 1 and repeat

Claim: x is distributed according to pdf f

Idea: Equivalent to generating a uniform point under $M \cdot g$ curve and accepting if point is under f curve

Rejection Sampling

Exer [h(x)] = h(x) g(x) du

What is the probability we get a sample in a round? $P\left(U \leq \frac{f(x)}{M \cdot g(x)}\right)$ $= \mathbb{E}_{x \sim Y}\left[P_{U}\left(U \leq \frac{f(x)}{M \cdot g(x)}\right)\right] \text{ by LTP}$

Unif(0,1) distribution

$$f \text{ is a pdf}$$

$$= \mathbb{E}_{x \sim Y} \left[\frac{f(x)}{M \cdot g(x)} \right] = \int_{-\infty}^{\infty} \frac{f(x)}{M \cdot g(x)} g(x) dx = \int_{-\infty}^{\infty} \frac{f(x)}{M} dx = \frac{1}{M}$$

$$\mathbb{E}[\# \text{ rounds}] = M$$

Rejection Sampling – Examples of candidate distributions

- On a bounded domain
 - Unif(a, b) as scaled and shifted version of Unif(0,1)
- On non-negative reals
 - e.g. Y distributed as continuous extension of geometric distribution
 - Geometric(p) Unif(0,1)

Agenda

- Sampling basics
- Rejection sampling
- Reservoir sampling 🗨

Reservoir Sampling Algorithms

Goal: Choose a uniform random sample *S* of *k* items from a stream $x_1, x_2, x_3, ..., x_n$ where *n* is not known in advance

Not enough space to store stream: Only k elements plus O(1)

Easy if *n* is known in advance but we usually don't know it.

Useful for many applications

Basic Reservoir Sampling Algorithm

Goal: At each step $i \ge k$ array *S* is a uniformly random sample of $x_1, x_2, x_3, ..., x_i$

Initialize: $S[1], \dots, S[k] \leftarrow x_1, \dots, x_k$

Step *i*: Choose *j* uniformly from $\{1, ..., i\}$ If $j \le k$ then $S[j] \leftarrow x_i$

Why is this correct?

Basic Reservoir Sampling Algorithm

Initialize: $S[1], \dots, S[k] \leftarrow x_1, \dots, x_k$

Step *i*: Choose *j* uniformly from $\{1, ..., i\}$ If $j \le k$ then $S[j] \leftarrow x_i$ Write for $S^{(i)}$ for S after step i

Claim: For each $i \ge k$ and every $\ell \le i$, $P(x_{\ell} \in S^{(i)}) = k/i$ Proof: Base case (i = k): trivial IH: Assume for every $\ell \le i - 1$, $P(x_{\ell} \in S^{(i-1)}) = k/(i - 1)$. IS: Case $\ell = i$: By definition $P(x_{\ell} \in S^{(i)}) = P(j \le k) = k/i$. Case $\ell < i$: $P(x_{\ell} \in S^{(i)}) = P(x_{\ell} \in S^{(i-1)}, j \ne \ell)$ $= P(x_{\ell} \in S^{(i-1)}) P(j \ne \ell) = k/i$

Reservoir Sampling

Only drawback of basic algorithm:

- Need to call **random()** *n* times, one per element of the stream
- Each call is expensive

It turns out that we can do it with only 3 calls per update to S!

Reservoir Sampling: Towards a more clever algorithm

- 1st idea: an alternative algorithm:
 - For each *i* independently, choose a $u_i \sim \text{Unif}(0,1)$.
 - At each step, keep the x_i with the k smallest u_i values

This seems worse; how can it help!

- 2nd idea: Let $w = \text{largest } u_j$ for $j \in S^{(i-1)}$ - $x_i \in S^{(i)}$ iff $u_i \le w$ Equivalent to $u_i < w$.
- **3**rd idea: Conditioned on " $w = \text{largest } u_j$ for $j \in S^{(i-1)}$ and $u_i \leq w$ "
 - The u_j for $j \in S^{(i)}$ are independent samples from [0, w]

4th idea: We only need to replace a random elt of $S^{(i-1)}$

Reservoir Sampling: Towards a more clever algorithm

4th **idea**: We only need to replace a random elt of $S^{(i-1)}$

Modified Algorithm:

- Initialize $S = \{x_1, ..., x_k\}$; set $w = \max\{u_1, ..., u_k\}$ for $u_j \sim \text{Unif}(0, 1)$

- Step *i*: Choose $u_i \sim \text{Unif}(0,1)$ if $u_i \leq w$ then replace a random elt of *S* with x_i set $w = \max\{u_1', \dots, u_k'\}$ for $u'_i \sim \text{Unif}(0, w)$

- 2nd idea: Let $w = \text{largest } u_j$ for $j \in S^{(i-1)}$
 - $-x_i \in S^{(i)}$ iff $u_i \leq w$
- **3**rd idea: Conditioned on " $w = \text{largest } u_j$ for $j \in S^{(i-1)}$ and $u_i \leq w$ " — The u_j for $j \in S^{(i)}$ are independent samples from [0, w]

19

Better Reservoir Sampling: Two final ideas

Modified Algorithm: - Initialize $S = \{x_1, ..., x_k\}$; set $w = \max\{u_1, ..., u_k\}$ for $u_j \sim \text{Unif}(0,1)$ - Step *i*: Choose $u_i \sim \text{Unif}(0,1)$ if $u_i \leq w$ then replace a random elt of *S* with x_i set $w = \max\{u_1', ..., u_k'\}$ for $u'_j \sim \text{Unif}(0, w)$

For fixed *w*, the indicator r.v. that Step *i* involves replacement is Bernoulli(*w*) so distribution of *#* of steps until next replacement is Geometric(*w*).

 $\max\{u'_1, \dots, u'_k\}$ for $u'_j \in \text{Unif}(0, w)$ is distributed as $w \cdot u^{1/k}$ for $u \sim \text{Unif}(0, 1)$

Better Reservoir Sampling: Final Algorithm

Optimal Reservoir Sampling:

- Initialize $S = \{x_1, ..., x_k\}$; set i = k; $w = u^{1/k}$ for $u \sim \text{Unif}(0, 1)$

– Loop

- Choose j ~ Geometric(w) using single call to random() (
- Set i = i + j skipping any elements in between
- Replace a random elt of *S* with $x_i \leftarrow$
- Set $w = w \cdot u^{1/k}$ for $u \sim \text{Unif}(0,1)$

This is typical of randomized algorithms

- Ideas for good algorithms touch on many different topics we've covered in CSE 312
- Even very good algorithms can be improved with more insight
- This isn't even all there is to reservoir sampling ...
 Non-uniform sampling based on weights for elements