
CSE 312

Foundations of Computing II

Lecture 27: Random Sampling

1

Random sampling

• We have seen a number of probability distributions

– some defined by intuitive natural random processes

– other useful distributions that seem more exotic

• We want to generate samples from these distributions

– For simulating natural processes

– For our randomized algorithms to behave well

• Polling

• Bloom filters

• MinHash

• PageRank

• Differential Privacy

• … (Cryptography)
2

Random Number Generation

• In Python, like many programming languages, there is a single
core random generator random()for distribution ���� 0,1

– Actually generates 53-bit precision floats in �0.0, 1.0

– Based on Mersenne Twister mod 219937 � 1

– Only pseudorandom

• Actually deterministic except for any randomness in initial “seed”

• Good enough for many applications

• (but not good enough for cryptography)

3

24th Mersenne Prime

23rd Mersenne Prime

Assume that this really is ���� 0,1 … What about other distributions?

Uniformly random integer � in {0, … , � � 1}?

randrange(n)

4

10

0

1

� ∼ Unif(0,1)

0 1 2 3 4

1

5

2

5

3

5

4

5

� ← ⌊��⌋

Actually floor(n*random())
with a small correction …

Generating ∼ !"#$"%&�'(1/2)?

From the original definition…

Repeat fair coin flip until heads:

z=1

while(randrange(2)!=1)

z=z+1

5

Drawbacks of this method?

– Time taken depends on the value of

– If value of is � then it takes � calls
randrange(2)

• That implies � calls to random()

• Such calls aren’t cheap

– May allow timing attacks by others
observing time taken

Is there a better way?

Generating ∼ !"#$"%&�'(1/2)?

From a single call to random():

• All we need is) = � = 1/2+

6

0 1
1

4

1

2

1

2+,-

1

2+

12…�
� ∼ Unif(0,1)

 = ⌈log2(1/�)⌉ z=ceiling(log(1/random(),2))

or better
z=ceiling(log2(1/random()))

Generating ∼ !"#$"%&�'(4)?

From a single call to random():

• All we need is) = � = 1 − 4 +,- 4 = 1 − 4 +,- − 1 − 4 +

7

0 11 − 41 − 4 21 − 4 +,-1 − 4 +

12…�
� ∼ Unif(0,1)

 = ⌈log-,5 �⌉ = ⌈log-/(-,5)(1/�)⌉

z=ceiling(log(1/random(),1/(1-p)))

Agenda

• Sampling basics

• Rejection sampling

• Reservoir sampling

8

Rejection Sampling

• Method for sampling from distribution � with pdf function � that you can
evaluate given that you:

– Can sample from “candidate” simpler distribution 6 with pdf function 7 you
can evaluate such that 7(8) > 0 whenever �(8) > 0

• More precisely, for some :, we have � 8 ≤ : ⋅ 7(8) for every 8

– Can sample from Unif(0,1)

9

Rejection Sampling

1. Sample 8 according to candidate
distribution 6 with pdf 7

2. Choose � ∼ Unif 0,1

3. If � ≤
= >

?⋅@(>)
return 8

else go to step 1 and repeat

10

�

7

2.2 7

8

: ⋅ 7(8)

�(8)

:

Claim: 8 is distributed according to pdf �

Idea: Equivalent to generating a
uniform point under : ⋅ 7 curve and
accepting if point is under � curve

Rejection Sampling

What is the probability we get a sample in a round?

) � ≤
= >

?⋅@(>)

= A>∼B)C � ≤
= >

?⋅@ >

= A>∼B
= >

?⋅@ >
= D

= >

?⋅@ >

E

,E 7 8 F8 = D
= >

?

E

,E
F8 =

-

?

11

Unif(0,1) distribution
� is a pdf

A[# rounds] = :

by LTP

Rejection Sampling – Examples of candidate distributions

• On a bounded domain

– Unif(M, N) as scaled and shifted version of Unif(0,1)

• On non-negative reals

– e.g. 6 distributed as continuous extension of geometric
distribution

• Geometric 4 − Unif(0,1)

12

Agenda

• Sampling basics

• Rejection sampling

• Reservoir sampling

13

Reservoir Sampling Algorithms

Goal: Choose a uniform random sample T of U
items from a stream 8-, 82, 8V, … , 8W
where � is not known in advance

Not enough space to store stream: Only U elements plus X(1)

Easy if � is known in advance but we usually don’t know it.

Useful for many applications

14

Basic Reservoir Sampling Algorithm

Goal: At each step � ≥ U array T is a uniformly random sample of
8-, 82, 8V, … , 8+

Initialize: T 1 , … , T U ← 8-, … , 8Z

Step �: Choose [uniformly from {1, … , �}

If [≤ U then T [← 8+

Why is this correct?

15

Basic Reservoir Sampling Algorithm

Initialize: T 1 , … , T U ← 8-, … , 8Z

Step �: Choose [uniformly from {1, … , �}

If [≤ U then T [← 8+

Claim: For each � ≥ U and every ℓ ≤ �,) 8ℓ ∈ T + = U/�

Proof: Base case (� = U): trivial

IH: Assume for every ℓ ≤ � − 1,) 8ℓ ∈ T +,- = U/(� − 1).

IS: Case ℓ = � : By definition) 8ℓ ∈ T + =) [≤ U = U/�.

Case ℓ < � :) 8ℓ ∈ T + =) 8ℓ ∈ T +,- , [≠ ℓ

 =) 8ℓ ∈ T +,-) [≠ ℓ =
Z

+,-
⋅

+,-

+
= U/�

16

Write for T + for T after step �

Reservoir Sampling

Only drawback of basic algorithm:

– Need to call random() � times, one per element of the stream

– Each call is expensive

It turns out that we can do it with only 3 calls per update to T!

17

Reservoir Sampling: Towards a more clever algorithm

• 1st idea: an alternative algorithm:

– For each � independently, choose a `+ ∼ Unif(0,1).

– At each step, keep the 8a with the U smallest à values

This seems worse; how can it help!

• 2nd idea: Let b = largest à for [∈ T +,-

– 8+ ∈ T + iff `+ ≤ b

• 3rd idea: Conditioned on “b = largest à for [∈ T +,- and `+ ≤ b”

– The à for [∈ T + are independent samples from [0, b]
18

Equivalent to `+ < b.

4th idea: We only need to

replace a random elt of T +,-

Reservoir Sampling: Towards a more clever algorithm

Modified Algorithm:

– Initialize T = 8-, … , 8Z ; set b = max `-, … `Z for à ∼ Unif(0,1)

– Step �: Choose `+ ∼ Unif 0,1
if `+ ≤ b then replace a random elt of T with 8+

set b = max `-′, … `Z′ for à
f ∼ Unif 0, b

• 2nd idea: Let b = largest à for [∈ T +,-

– 8+ ∈ T + iff `+ ≤ b

• 3rd idea: Conditioned on “b = largest à for [∈ T +,- and `+ ≤ b”

– The à for [∈ T + are independent samples from [0, b]
19

4th idea: We only need to

replace a random elt of T +,-

Better Reservoir Sampling: Two final ideas

Modified Algorithm:

– Initialize T = 8-, … , 8Z ; set b = max `-, … `Z for à ∼ Unif(0,1)

– Step �: Choose `+ ∼ Unif 0,1
if `+ ≤ b then replace a random elt of T with 8+

set b = max `-′, … `Z′ for à
f ∼ Unif 0, b

20

For fixed b, the indicator r.v. that Step � involves replacement is Bernoulli(b) so
distribution of # of steps until next replacement is Geometric(b).

max{`-
f , … , `Z

f } for à
f ∈ Unif 0, b is distributed as b ⋅ `-/Z for ` ∼ Unif(0,1)

Better Reservoir Sampling: Final Algorithm

Optimal Reservoir Sampling:

– Initialize T = 8-, … , 8Z ; set � = U; b = `-/Z for ` ∼ Unif(0,1)

– Loop

• Choose [∼ Geometric b using single call to random()

• Set � = � + [skipping any elements in between

• Replace a random elt of T with 8+

• Set b = b ⋅ `-/Z for ` ∼ Unif 0,1

21

This is typical of randomized algorithms

• Ideas for good algorithms touch on many different topics
we’ve covered in CSE 312

• Even very good algorithms can be improved with more
insight

• This isn’t even all there is to reservoir sampling …

– Non-uniform sampling based on weights for elements

22

