LCLint User's Guide

LCLint is a tool for statically checking C programs. With minimal effort, LCLint can be used as a better lint. If additional effort is invested adding annotations to programs, LCLint can perform stronger checks than can be done by any standard lint.

Some problems detected by LCLint include:

· Violations of information hiding. A user-defined type can be declared as abstract, and a message is reported where code inappropriately depends on the representation of the type.

· Inconsistent modification of caller-visible state. Functions can be annotated with information on what caller-visible state may be modified by the function, and an error is reported if the modifications produced by the function contradict its declaration.

· Inconsistent use of global variables. Information on what global and file scope variables a function may use can be added to function declarations, and a message is reported if the implementation of the function uses other global variables or does not uses every global variable listed in its declaration.

· Memory management errors. Instances where storage that has been deallocated is used, or where storage is not deallocated (memory leaks).

· Dangerous data sharing or unexpected aliasing. Parameters to a function share storage in a way that may lead to undefined or undesired behavior, or a reference to storage within the representation of an abstract type is created.

· Using possibly undefined storage or returning storage that is not completely defined (except as documented).

· Dereferencing a possibly null pointer.

· Dangerous macro implementations or invocations.

· Violations of customizable naming conventions.

· Program behavior that is undefined because it depends on order of evaluation, likely infinite loops, fall-through cases, incomplete logic, statements with no effect, ignored return values, unused declarations, and exceeding certain standard limits.

LCLint checking can be customized to select what classes of errors are reported using command line flags and stylized comments in the code.

- The LCLint homepage (http://lclint.cs.virginia.edu/)

gprof

Profiling allows you to learn where your program spent its time and which functions called which other functions while it was executing. This information can show you which pieces of your program are slower than you expected, and might be candidates for rewriting to make your program execute faster. It can also tell you which functions are being called more or less often than you expected. This may help you spot bugs that had otherwise been unnoticed.

Since the profiler uses information collected during the actual execution of your program, it can be used on programs that are too large or too complex to analyze by reading the source. However, how your program is run will affect the information that shows up in the profile data. If you don't use some feature of your program while it is being profiled, no profile information will be generated for that feature.

Profiling has several steps:

· You must compile and link your program with profiling enabled.

· You must execute your program to generate a profile data file.

· You must run gprof to analyze the profile data.

Several forms of output are available from the analysis:

· The flat profile shows how much time your program spent in each function, and how many times that function was called. If you simply want to know which functions burn most of the cycles, it is stated concisely here.

· The call graph shows, for each function, which functions called it, which other functions it called, and how many times. There is also an estimate of how much time was spent in the subroutines of each function. This can suggest places where you might try to eliminate function calls that use a lot of time.

· The annotated source listing is a copy of the program's source code, labeled with the number of times each line of the program was executed.

- From the gprof homepage (http://www.gnu.org/manual/gprof-2.9.1/gprof.html)

Hungarian Notation

Hungarian Notation is a naming convention that (in theory) allows the programmer to determine the type and use of an identifier (variable, function, constant, etc.) It is frequently used in Windows programming, so a quick guide may be useful if you're working with Windows code but can't follow the naming scheme.

Variable names are probably the most common type of identifiers. A variable name in Hungarian notation consists of three parts: the prefix (or constructor), base type (or tag), and qualifier. Not all of these elements will be present in all variable names -- the only part that is really needed is the base type.

Base Types (Tags)

The tag is NOT necessarily one of the types directly provided by the programming language; it may be application-defined (for example, a type dbr might represent a database record structure). Tags are short (usually two or three letters) descriptive reminders about the type of value the variable stores. This type will usually only be useful to someone who knows the application and knows what the basic types the application uses are; for example, a tag co could just as easily refer to a coordinate, or a color. Within a given application, however, the co would always have a specific meaning -- all co's would refer to the same type of object, and all references to that type of object would use the tag co.

These are many basic types that are used in any application. These tags are used for these types.

	Tag
	Description

	f
	Boolean flag. The qualifier should be used to describe the condition that causes the flag to be set (for example, fError might be used to indicate a variable that is set when an error condition exists, and clear when there is no error). The actual data representation may be a byte, a word, or even a single bit in a bitfield.

	ch
	A single-byte character.

	d
	A double-precision real number (double)

	sz
	A null-terminated (C-style) string.

Prefixes (Constructors)

The base types are not usually sufficient to describe a variable, since variables frequently refer to more complex types. For example, you may have a pointer to a database record, or an array of coordinates, or a count of characters. In Hungarian notation, these extended types are described by the variable's prefix. The complete type of a variable is given by the combination of the prefix(es) and base type. Yes, it is possible to have more than one prefix -- for example, you may have a pointer to an array of database records.

	Constructor
	Description

	p
	A pointer.

	i
	An index (into an array). For example, an ich could be used to index into an rgch. I've also seen this used for resource IDs under Windows (which makes sense if you think about it -- a resource ID is an index into a resource table).

	c
	A count. cch could be the count of characters in an rgch. (As another example, note that the first byte of an st is the cch of that string.)

	v
	A global variable (personally I prefer g for this)

	s
	A static variable

	k
	A const variable (C++)

Examples

Tags and constructors are both in lower case, with no seperating punctuation, so some ambiguity is possible if you are not careful in choosing your representations. For example, you probably shouldn't use pfn to represent a structure you've defined, as it could be taken as a pointer (p) to a function (fn). (Even if you ARE careful, some ambiguity is still possible.

Here are some further examples of constructors + tags:

	Variable
	Description

	pch
	A pointer to a character.

	ich
	An index into an array of characters.

	rgsz
	An array of null-terminated strings (most likely the values stored in the array are actually pointers to the strings, so you could arguably also use rgpsz).

	rgrgx
	A two-dimensional array of x's. (An array of arrays of x's.)

	pisz
	A pointer to an index into an array of null-terminated strings. (Or possibly a pointer to a resource ID of a string -- the real meaning should be clear within the context of the code.)

- From “Greg’s Guide to Hungarian Notation” (http://home.jtan.com/~gregleg/hungarian.html)
- See also Charles Simonyi’s original paper on Hungarian, available at MSDN Online

CVS (Concurrent Versions System)

CVS is a version control system. Using it, you can record the history of your source files.

For example, bugs sometimes creep in when software is modified, and you might not detect the bug until a long time after you make the modification. With CVS, you can easily retrieve old versions to see exactly which change caused the bug. This can sometimes be a big help.

You could of course save every version of every file you have ever created. This would however waste an enormous amount of disk space. CVS stores all the versions of a file in a single file in a clever way that only stores the differences between versions.

CVS also helps you if you are part of a group of people working on the same project. It is all too easy to overwrite each others' changes unless you are extremely careful. Some editors, like GNU Emacs, try to make sure that the same file is never modified by two people at the same time. Unfortunately, if someone is using another editor, that safeguard will not work. CVS solves this problem by insulating the different developers from each other. Every developer works in his own directory, and CVS merges the work when each developer is done.

- From the CVS homepage (http://www.cvshome.org/)

References

Quick Reference cards for Emacs, XEmacs, gdb, etc

http://www.refcards.com

C++ STL Reference (do not use MSDN!)

http://www.dinkumware.com/htm_cpl/index.html

or

http://www.sgi.com/tech/stl/stl_index.html

Various Unix-related tools

http://www.cs.washington.edu/orgs/acm/tutorials/

