CSE 326 Lecture 11: Heaps and Binomial Queues
\downarrow What's on the menu today?
\Rightarrow Heaps: DeleteMin, Insert, DecreaseKey, BuildHeap... \Rightarrow Binomial Queues: Merge, Insert, DeleteMin

\star Covered in Chapter 6 in the text

- A binary heap is a binary tree that is:

1. Complete: Tree completely filled except possibly the bottom level, which is filled from left to right
2. Satisfies the heap order property: every node is smaller than (or equal to) its children

- Therefore, the root node is always the smallest in a heap

Last Time: Heap Operations

Basic Heap ADT Operations: FindMin, DeleteMin, Insert

DeleteMin using Percolate Down

- Keep comparing with children $\mathrm{A}[2 \mathrm{i}]$ and $\mathrm{A}[2 \mathrm{i}+1]$
- Replace with smaller child and go down one level
- Done if both children are \geq item or reached a leaf node
- Maintains both completeness and Heap order

Heaps: Insert Operation

- Insert at last node and keep comparing with parent $\mathrm{A}[\mathrm{i} / 2]$
- If parent larger, replace with parent and go up one level
- Done if parent \leq item or reached top node $\mathrm{A}[1]$
- Run time?

Sentinel Values

- Every iteration of Insert needs to test:

1. if it has reached the top node A[1]
2. if parent \leq item

- Can avoid first test if A[0] contains a very large negative value (denoted by $-\infty$)
- Then, test \#2 always stops at top $\Rightarrow-\infty<$ item for all items
- Such a data value that serves as a marker
 is called a sentinel
\Rightarrow Used to improve efficiency and simplify code

$-\infty$	1	2	3	7	4	8	9	11	9	6	5

Summary of Heap ADT Analysis: Space

\rightarrow Consider a heap of N nodes

- Space needed: O(N)
\Rightarrow Actually, O (MaxSize) where MaxSize = size of the array
\Rightarrow One more variable to store the current size N
\Rightarrow With sentinel:
Array-based implementation uses total $\mathrm{N}+2$ space
\Rightarrow Pointer-based implementation: pointers for children and parent
- Total space $=3 \mathrm{~N}+1(3$ pointers per node +1 for size $)$

Run Time Analysis of Heap ADT

\downarrow Consider a heap of N nodes
\rightarrow FindMin: O(1) time
\uparrow DeleteMin and Insert: $\mathrm{O}(\log \mathrm{N})$ time
\downarrow BuildHeap from N inputs: What is the run time?
$\Rightarrow N$ Insert operations $=O(N \log N)$.
\Rightarrow Can we do better?

Run Time Analysis of Heap ADT

\downarrow Consider a heap of N nodes

- FindMin: O(1) time
- DeleteMin and Insert: $\mathrm{O}(\log \mathrm{N})$ time
\downarrow BuildHeap from N inputs: What is the run time?
$\Rightarrow N$ Insert operations $=O(N \log N)$.
\Rightarrow Actually, can do better... $\mathrm{O}(\mathrm{N})$: Treat input array as a heap and fix it using percolate down
- for $\mathrm{i}=\mathrm{N} / 2$ to 1, percolateDown(i)
- Why N/2? Nodes after N/2 are leaves!
- See text for proof that this takes $\underline{O}(N)$ time.

Other Heap Operations

$\rightarrow \operatorname{Find}(\mathrm{X}, \mathrm{H})$: Find the element X in heap H of N elements
\Rightarrow What is the running time?
\rightarrow FindMax(H): Find the maximum element in H
\Leftrightarrow What is the running time?

One More Operation

- Find and FindMax: O(N)
\downarrow DecreaseKey(P, $\Delta, H)$: Decrease the key value of node at position P by a positive amount Δ.
\Rightarrow E.g. System administrators can increase priority of important jobs.
\Rightarrow How?
- First, subtract Δ from current value at P
- Heap order property may be violated
- Percolate up or down?

Running time?

Some More Ops...

\rightarrow DecreaseKey $(\mathrm{P}, \Delta, \mathrm{H})$: Subtract Δ from current key value at P and percolate up. Running Time: $\mathrm{O}(\log \mathrm{N})$
\uparrow Increase $\operatorname{Key}(\mathrm{P}, \Delta, \mathrm{H})$: Add Δ to current key value at P and percolate down. Running Time: $\mathrm{O}(\log \mathrm{N})$
\Rightarrow E.g. Schedulers in OS often decrease priority of CPUhogging jobs (sound familiar?)
\uparrow Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
\Rightarrow How (using above operations)?
\Rightarrow Running Time?

One Last Operation: Merge

\uparrow Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user \Rightarrow Use DecreaseKey $(\mathrm{P}, \infty, \mathrm{H})$ followed by DeleteMin(H). \Rightarrow Running Time: $\mathrm{O}(\log \mathrm{N})$

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H 1 and H 2 are stored in two arrays. E.g. Combine queues from two different sources to run on one CPU.

1. Can do $\mathrm{O}(\mathrm{N})$ Insert operations: $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time
2. Better: Copy H2 at the end of H 1 and use BuildHeap Running Time: $\mathrm{O}(\mathrm{N})$
Can we do even better? (i.e. Merge in $\underline{\mathrm{O}(\log \mathrm{N})}$ time?)

Say Hello to Binomial Queues

\uparrow Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in O(log N) time

- Idea: Maintain a collection of heap-ordered trees \Rightarrow Forest of binomial trees
- Recursive Definition of Binomial Tree (based on height k):
\Rightarrow Only one binomial tree for a given height
\Rightarrow Binomial tree of height $0=$ single root node
\Rightarrow Binomial tree of height $\mathrm{k}=\mathrm{B}_{\mathrm{k}}=$ Attach $\mathrm{B}_{\mathrm{k}-1}$ to root of another $\mathrm{B}_{\mathrm{k}-1}$

3 Steps to Building a Binomial Tree

- To construct a binomial tree B_{k} of height k:

1. Take the binomial tree $\mathrm{B}_{\mathrm{k}-1}$ of height $\mathrm{k}-1$
2. Place another copy of $\mathrm{B}_{\mathrm{k}-1}$ one level below the first
3. Join the root nodes

- Binomial tree of height k has exactly $\underline{2}^{\mathrm{k}}$ nodes (by induction)

Definition of Binomial Queues

Binomial Queue = "forest" of heap-ordered binomial trees

Binomial queue H 1
5 elements $=2^{0}+2^{2}$
i.e. Uses B_{0} and B_{2}
$\begin{array}{lll}\mathrm{B}_{0} & \mathrm{~B}_{1} & \mathrm{~B}_{3}\end{array}$
(21)

Binomial queue H 2
(6)

11 elements $=2^{0}+2^{1}+2^{3}$
i.e. uses $B_{0} B_{1} B_{3}$

Binomial Queue Properties

- Suppose you are given a binomial queue of N nodes

1. There is a unique set of binomial trees for N nodes (express N in binary to find out which trees are in the set)
2. What is the maximum number of trees that can be in an N node queue?
$\Rightarrow 1$ node 1 tree $\mathrm{B}_{0} ; 2$ nodes 1 tree $\mathrm{B}_{1} ; 3$ nodes 2 trees B_{0} and $\mathrm{B}_{1} ; 7$ nodes 3 trees $\mathrm{B}_{0}, \mathrm{~B}_{1}$ and $\mathrm{B}_{2} \ldots$

Number of Trees in a Binomial Queue

- What is the maximum number of trees that can be in an N node binomial queue?
$\Rightarrow 1$ node 1 tree $\mathrm{B}_{0} ; 2$ nodes 1 tree $\mathrm{B}_{1} ; 3$ nodes 2 trees B_{0} and $\mathrm{B}_{1} ; 7$ nodes 3 trees $\mathrm{B}_{0}, \mathrm{~B}_{1}$ and $\mathrm{B}_{2} \ldots$
\leftrightarrow Trees $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}$ can store up to $2^{0}+2^{1}+\ldots+2^{\mathrm{k}}=$ $2^{\mathrm{k}+1}-1$ nodes $=\mathrm{N}$.
\uparrow Maximum is when all $k+1$ trees are used.
- So, number of trees in an N -node binomial queue is $\leq \mathrm{k}+1=$ $(\log (\mathrm{N}+1)-1)+1=\mathrm{O}(\log \mathrm{N})$

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
\Rightarrow Since $\mathrm{B}_{\mathrm{k}+1}$ is just two B_{k} 's attached together, merging trees is easy
- Creating new queue by merging:

1. Start with B_{k} for smallest k in either queue.
2. If only one B_{k}, add B_{k} to new queue and go to next k.
3. Merge two B_{k} 's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with $\mathrm{k}=\mathrm{k}+1$.

Binomial Queues: Merge Exercise

\downarrow What do you get when you Merge H1 and H2?
H 1 :

H2:
(21)

Binomial Queues: Merge

- What is the run time for Merge of two $\mathrm{O}(\mathrm{N})$ queues?

Binomial Queues: Merge and Insert
\uparrow What is the run time for Merge of two $\mathrm{O}(\mathrm{N})$ queues?
\Rightarrow Keep connecting roots of trees
\Rightarrow Total Run Time $=\mathrm{O}($ number of trees $)=\mathrm{O}(\log \mathrm{N})$

Binomial Queues: Insert

\checkmark How would you insert a new item into the queue?
\Rightarrow Create a single node queue B_{0} with new item and Merge with existing queue
\Rightarrow Again, $\mathrm{O}(\log \mathrm{N})$ time
\uparrow Exercise: Insert 1, 2, 3, .., 7 into an empty binomial queue

Binomial Queues: DeleteMin

Binomial Queues: DeleteMin

- Steps:

1. Find tree B_{k} with the smallest root
2. Remove B_{k} from the queue
3. Delete root of B_{k} (return this value); You now have a second queue made up of the forest $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}-1}$
4. Merge this queue with remainder of the original (from step 2)

- Run time analysis: How much time do Steps 1 through 4 take for an N -node queue?

Binomial Queues: DeleteMin

- Steps:

1. Find tree B_{k} with the smallest root
2. Remove B_{k} from the queue
3. Delete root of B_{k} (return this value); You now have a second queue made up of the forest $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}-1}$
4. Merge this queue with remainder of the original (from step 2)

- Run time analysis: Step 1 is $O(\log N)$, steps 2 and 3 are $\mathrm{O}(1)$, and step 4 is $\mathrm{O}(\log \mathrm{N})$. Total time $=\mathrm{O}(\log \mathrm{N})$
\qquad

Next Class:
From Heaps to Hashes

To Do:
Finish Chapter 6 and Start Chapter 5
Homework \# 3 has been assigned on the Web
Due Thursday, Feb 13. Start Early!!

