Trees, Trees, and Trees

+ Today’ s agenda:
< Traversing trees
< Binary Search Trees
< ADT Operations: Find, Insert, Remove (Delete), etc...

4+ Covered in Chapter 4 of the text
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Example: Representing Arithmetic Expressions

Example Arithmetic Expression:
A+(B*(C/D)) °

Tree for the above expression:
L eaves = operands (constants/variables) Q °
Non-leaf nodes = operators

» Used in most compilers @ 0
» No parenthesis need — use tree structure

 Can speed up calculations e.g. replace
/ node with C/D if C and D are known @ Q

How do you evaluate the expression
rRrocsewe  represented by the tree? )




Evaluating Arithmetic Expression Trees

How do you evaluate the expression
represented by this tree?

1. Recursively evaluate left and right
subtrees
2. Apply operation at the root

Known as “Postorder traversal”
Process children first and then the
root (therefore “post” order)
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Traversing Trees

4+ Postorder: Children first, then Root
ABCD/* +

+ Preorder: Root, then Children
+A*B/CD

+ Inorder: Left child, Root, Right child
A+B*C/D
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Example Pseudocode for Recursive Preorder

void print preorder (TreeNode T)
{ TreeNode P;
if ( T == NULL ) return;
else { <Print Element stored in T»>
P = T.FirstChild;
while (P != NULL) {
print preorder ( P );
P = P.NextSibling; }

}

What is the running time for atree with N nodes?
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Recursion makes
me nervous...can't
we do thiswith a
stack?
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Preorder Traversal with a Stack

void Stack Preorder (TreeNode T, Stack S) {

if (T == NULL) return; else push(T,S);
while (!isEmpty(S)) ({
T = pop(S);
<Print Element stored in T>
if (T.NextSibling != NULL)
push (T.NextSibling, S);
if (T.FirstChild != NULL)

push (T.FirstChild, S);

}
}

What is the running time for atree with N nodes?
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Binary Trees

+ Every node has at most two children
< Most popular treein computer science

+ Given N nodes, what is the minimum depth of a binary tree?

AP

Depth 0: N = 1 = 20 nodes
Depth 1: N = 2 to 3 nodes = 2! to 2*1-1 nodes
At depthd, N =7
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Deep Facts about Binary Trees

+ Given N nodes, what is the minimum depth of a binary tree?
Depth 0: N =1 node = 20
Depth 1: N =2 to 3 nodes = 21 to 21+1-1
At depth d, N = 24 to 2¢*1-1 nodes (afull tree)
So, minimum depth d is:
log N <d<log(N+1)-1 or ®(log N)

+ What is the maximum depth of a binary tree?
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More Deep Facts about Binary Trees

+ Minimum depth of N-node binary treeis ®(log N)

+ What is the maximum depth of a binary tree?
< Degenerate case: Treeisalinked list!
< Maximum depth = N-1

+ Goal: Would like to keep depth at around log N to get better
performance than linked list for operations like Find.
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Array Implementation of Binary Trees

+ Used mostly for complete binary trees
< A complete tree has no gaps when you scan the @
nodes | eft-to-right, top-to-bottom

+ ldea Use left-to-right scan to impose a @ @
linear order on the tree nodes

+ Implementation: /
< Children of A[i] = A[2i+1], A[2i+2]
< Useadefault value to indicate empty node e @
< Why isthis implementation inefficient for
non-compl ete trees?

0 1 2 3 4| 5 MAX

14 | 15 | 97 5 |24
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Binary Search Trees

+ Binary search trees are binary treesin
which the valuein every nodeis: Q

> dl values in the node' s left subtree
< al valuesin the node sright subtree e @

x> all valuesin L x < al valuesin R @ @

LA ®© ®
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Binary Search Trees

+ Handling Duplicates:
< Increment a counter stored in item’s node
or
< Usealinked list or another search tree at
item’s node

+ Application: “Look-up” table
< E.g.: Academic records systems:
Given SSN, return student record
SSN stored in each node as the key value
< E.g.: Given zip code, return city/state
< E.g.: Given name, return address/phone no.
» Can usedictionary order for strings
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Operations on Binary Search Trees

+ Main Operations: Find(96,T) ,—~&" T
FindMin(BinaryNode T)
FindMax(BinaryNode T)
Find(Comparable X, BinaryNode T)
Insert(Comparable X, BinaryNode T)
Remove(Comparable X, BinaryNode T)

+ How would you implement these?
< Exercise: How does Find(X,T) work?

Hint: Recursive definition of
BSTs allows recursive routines!
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Find on BSTs

+ Exercise: How does Find(X,T) work?

1. If T null, return null /T
2. 1f X < T.Element Q
return Find(X,T.left) X = 96

elseif X > T.Element

return Find(X, T.right) e @

elsereturn T //Found!
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Insert Operation

4+ Similar to Find

+ Insert(Comparable X, BinaryNode T)

IfTnull, Insert Xa T

elseif X < T.Element @
T.left = Insert(X,T.left)

elseif X > T.Element 5
T.right = Insert(X,T.right) -

else @ @

Duplicate:

Update duplicates counter

Return T @ @
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Insert 95




Example of Insert

+ Example: Insert 95
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Remove (or Delete) Operation

+ Removeisabit trickier...Why? @
+ Suppose you want to remove 10
+ Strategy: @ @

1. Find 10
2. Remove the node containing 10
+ Problem: When you remove a node, e @

what do you replace it with?

®
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A Problem with Remove

+ Problem: When you remove a node,
what do you replace it with?

4+ Three cases;
1. If it has no children, with NULL

E.g. Remove 5
2. If it has 1 child, with that child
E.g. Remove 24 (replace with 11) 9 @

3. If it has 2 children, with the smallest
value node in its right subtree
E.g. Remove 10 (replace with 11) @
+ Preserves BST property
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More Trouble with Remove

+ Problem: When you remove a node,
what do you replace it with?
3. If it has 2 children, with the smallest
value node in its right subtree

o
E.g. Remove 10 (replace with 11) O

But what about the
hole left by 11?
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Example: Remove “ 10"

1. Find 10,
Replace with
smallest

valuein @ @

right subt /\
e — e @ 2. Then,

®
@
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recursively
@ remove the
node
contal ning 11
21

Example: Remove “ 10"

11 in
right subtree
(recursive
remove) @ - e @

3. Find “11
1 child —so

ind “117, 4. Remove “17”
. No child, so
replace by Chl|d NULL . replace by NULL
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Summary of Remove

+ Removing a node containing X: @

1. Find the node containing X

2. Replace it with:
If it has no children, with NULL
If it has 1 child, with that child @ @
If it has 2 children, with the node with
the smallest value in its right subtree,
(or largest value in left subtree) 6 @

3. Recursively remove node used in 2 and 3

+ Worst case: Recursion propagates all
the way to aleaf node —time is @
O(depth of tree)
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Next Class:

A Balancing Act with Trees
Species of Trees: AVL, splay, and B

R. Rao, CSE 326 24




