CSE 326 DATA STRUCTURES HOMEWORK 5

Due: Wednesday, July 25, 2007 at the beginning of class.

- 1. Show the final table resulting from inserting 10, 15, 12, 3, 1, 13, 4, 17, and 8 into the following initially empty hash table implementations. Indicate if and when no more keys can be inserted into the table. Assume the table size is 11.
 - (a) Separate chaining.
 - (b) Linear probing.
 - (c) Quadratic probing.
 - (d) Double hashing, where the second hash function is $hash(x) = 5 (x \mod 5)$.
- 2. In this problem we see how to use hashing to do fast string search. Suppose we have a string $A = a_1 a_2 \ldots a_m$ that we would like to find the first occurrence of in a longer target string $T = t_1 t_2 \ldots t_n$. Assume that we use a large prime p for hashing strings and our hash function is $h(x) = x \mod p$. The idea is to first compute h(A) then compute $h(t_i \ldots t_{i+m-1})$ for $i = 1, 2, 3, \ldots$ until this value equals h(A). The string $t_i \ldots t_{i+m-1}$ can then be checked to see if it equals A. If so, we're done, if not we have a false positive and we continue the search.
 - (a) Show that $h(t_{i+1} \dots t_{i+m})$ can be computed in constant time given $h(t_i \dots t_{i+m-1})$.
 - (b) Show that the time to do the search is O(m+n) time plus the time to check false positives.
 - (c) Compute the probability of a false positive as a function of p.
- 3. Weiss, problem 5.4, 5.5.
- 4. (extra credit) Weiss, problem 5.12