CSE 326 DATA STRUCTURES HOMEWORK 5

Due: Wednesday, July 25, 2007 at the beginning of class.

1. Show the final table resulting from inserting $10,15,12,3,1,13,4,17$, and 8 into the following initially empty hash table implementations. Indicate if and when no more keys can be inserted into the table. Assume the table size is 11 .
(a) Separate chaining.
(b) Linear probing.
(c) Quadratic probing.
(d) Double hashing, where the second hash function is hash $(x)=5-(x \bmod 5)$.
2. In this problem we see how to use hashing to do fast string search. Suppose we have a string $A=$ $a_{1} a_{2} \ldots a_{m}$ that we would like to find the first occurrence of in a longer target string $T=t_{1} t_{2} \ldots t_{n}$. Assume that we use a large prime p for hashing strings and our hash function is $h(x)=x \bmod p$. The idea is to first compute $h(A)$ then compute $h\left(t_{i} \ldots t_{i+m-1}\right)$ for $i=1,2,3, \ldots$ until this value equals $h(A)$. The string $t_{i} \ldots t_{i+m-1}$ can then be checked to see if it equals A. If so, we're done, if not we have a false positive and we continue the search.
(a) Show that $h\left(t_{i+1} \ldots t_{i+m}\right)$ can be computed in constant time given $h\left(t_{i} \ldots t_{i+m-1}\right)$.
(b) Show that the time to do the search is $O(m+n)$ time plus the time to check false positives.
(c) Compute the probability of a false positive as a function of p.
3. Weiss, problem 5.4, 5.5.
4. (extra credit) Weiss, problem 5.12
