
1/29/2012

1

1

CSE 390a
Lecture 5

Intro to shell scripting

slides created by Marty Stepp, modified by Jessica Miller & Ruth Anderson

http://www.cs.washington.edu/390a/

2

Lecture summary
• basic script syntax and running scripts

• shell variables and types

• control statements: the for loop

3

Shell scripts
• script: A short program meant to perform a targeted task.

� a series of commands combined into one executable file

• shell script: A script that is executed by a command-line shell.

� bash (like most shells) has syntax for writing script programs

� if your script becomes > ~100-150 lines, switch to a real language

• To write a bash script (in brief):

� type one or more commands into a file; save it

� type a special header in the file to identify it as a script (next slide)

� enable execute permission on the file

� run it!

4

Basic script syntax
#!interpreter

� written as the first line of an executable script; causes a file to be

treated as a script to be run by the given interpreter

• (we will use /bin/bash as our interpreter)

• Example: A script that removes some files and then lists all files:

#!/bin/bash

rm output*.txt

ls -l

5

Running a shell script
• by making it executable (most common; recommended):

chmod u+x myscript.sh

./myscript.sh

• by launching a new shell:

bash myscript.sh

• by running it within the current shell:

source myscript.sh

� advantage: any variables defined by the script remain in this shell

(seen later)

6

echo

• Example: A script that prints your home directory.

#!/bin/bash
echo "This is my amazing script!"
echo "Your home dir is: `pwd`"

• Exercise : Write a script that when run on attu does the following:
� clears the screen

� displays the date/time: Today’s date is Tue Apr 26 10:44:18 PDT 2011

� shows me an ASCII cow welcoming my user name

command description

echo produces its parameter(s) as output

(the println of shell scripting)

-n flag to remove newline (print vs println)

1/29/2012

2

7

Script example
#!/bin/bash
clear
echo "Today's date is `date`"
echo
~stepp/cowsay `whoami`

echo "These users are currently connected:"
w -h | sort
echo

echo "This is `uname -s` on a `uname -m` processor."
echo

echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

8

Comments
comment text

� bash has only single-line comments; there is no /* ... */ equivalent

• Example:

#!/bin/bash
Leonard's first script ever
by Leonard Linux
echo "This is my amazing script!"
echo "The time is: `date`"

This is the part where I print my home directory
echo "Home dir is: `pwd`"

9

Shell variables
• name=value (declaration)

� must be written EXACTLY as shown; no spaces allowed

� often given all-uppercase names by convention

� once set, the variable is in scope until unset (within the current shell)

NUMFRIENDS=2445
NAME="Guess who"

• $name (usage)

echo "$NAME has $NUMFRIENDS FB friends"
Guess who has 2445 FB friends

10

Common errors
• if you misspell a variable's name, a new variable is created

NAME=Ruth
...
Name=Rob # oops; meant to change NAME

• if you use an undeclared variable, an empty value is used

echo "Welcome, $name" # Welcome,

• when storing a multi-word string, must use quotes

NAME=Ruth Anderson # $NAME is Ruth
NAME=“Ruth Anderson" # $NAME is Ruth Anderson

11

More Errors…
• Using $ during assignment or reassignment

� $mystring=“Hi there” # error

� mystring2=“Hello”

� …

� $mystring2=“Goodbye” # error

• Forgetting echo to display a variable

� $name

� echo $name

12

Capture command output
variable=`command`

� captures the output of command into the given variable

• Example:

FILE=`ls -1 *.txt | sort | tail -1`
echo "Your last text file is: $FILE"

� What if we leave off the last backtick?

� What if we use quotes instead?

1/29/2012

3

13

Types and integers
• most variables are stored as strings

� operations on variables are done as string operations, not numeric

• to instead perform integer operations:

x=42
y=15
let z="$x + $y" # 57

• integer operators: + - * / %

� bc command can do more complex expressions

• if a non-numeric variable is used in numeric context, you'll get 0

14

Bash vs. Java

x=3

� x vs. $x vs. "$x" vs. '$x' vs. \'$x\' vs. 'x'

Java Bash

String s = "hello"; s=hello

System.out.println("s"); echo s

System.out.println(s); echo $s

s = s + "s"; // "hellos" s=${s}s

String s2 = "25";
String s3 = "42";
String s4 = s2 + s3; // "2542"
int n = Integer.parseInt(s2)

+ Integer.parseInt(s3); // 67

s2=25
s3=42
s4=$s2$s3
let n="$s2 + $s3"

15

Special variables

� these are automatically defined for you in every bash session

• Exercise : Change your attu prompt to look like this:

jimmy@mylaptop:$

� See man bash for more details on setting your prompt

variable description

$DISPLAY where to display graphical X-windows output

$HOSTNAME name of computer you are using

$HOME your home directory

$PATH list of directories holding commands to execute

$PS1 the shell's command prompt string

$PWD your current directory

$SHELL full path to your shell program

$USER your user name

16

$PATH
• When you run a command, the shell looks for that program in all

the directories defined in $PATH

• Useful to add commonly used programs to the $PATH

• Exercise: modify the $PATH so that we can directly run our shell

script from anywhere

� echo $PATH

� PATH=$PATH:/homes/iws/rea

• What happens if we clear the $PATH variable?

17

set, unset, and export

� typing set or export with no parameters lists all variables

� Exercise: set a local variable, and launch a new bash shell

• Can the new shell see the variable?

• Now go back and export. Result?

shell command description

set sets the value of a variable

(not usually needed; can just use x=3 syntax)

unset deletes a variable and its value

export sets a variable and makes it visible to any

programs launched by this shell

readonly sets a variable to be read-only

(so that programs launched by this shell cannot

change its value)

18

Console I/O

� variables read from console are stored as strings

• Example:

#!/bin/bash

read -p "What is your name? " name

read -p "How old are you? " age

printf "%10s is %4s years old" $name $age

shell command description

read reads value from console and stores it into a variable

echo prints output to console

printf prints complex formatted output to console

1/29/2012

4

19

Command-line arguments

� Example.sh:

#!/bin/bash

echo “Name of script is $0”

echo “Command line argument 1 is $1”

echo “there are $# command line arguments: $@”

•Example.sh argument1 argument2 argument3

variable description

$0 name of this script

$1, $2, $3, ... command-line arguments

$# number of arguments

$@ array of all arguments

20

for loops
for name in value1 value2 ... valueN; do

commands

done

• Note the semi-colon after the values!

• the pattern after in can be:
� a hard-coded set of values you write in the script

� a set of file names produced as output from some command

� command line arguments: $@

• Exercise: create a script that loops over every .txt file in the
directory, renaming the file to .txt2
for file in *.txt; do
mv $file ${file}2
done

21

Exercise
• Write a script createhw.sh that creates directories named hw1,

hw2, ... up to a maximum passed as a command-line argument.

$./createhw.sh 8

� Copy criteria.txt into each assignment i as criteria(2*i).txt

� Copy script.sh into each, and run it.

• output: Script running on hw3 with criteria6.txt ...

� The following

command may be

helpful:
command description

seq outputs a sequence of numbers

22

Exercise solution
#!/bin/bash
Creates directories for a given number of assignments.

for num in `seq $1`; do
let CNUM="2 * $num"
mkdir "hw$num"
cp script.sh "hw$num/"
cp criteria.txt "hw$num/criteria$CNUM.txt"
echo "Created hw$num."
cd "hw$num/"
bash ./script.sh
cd ..

done

