
2/27/2012

1

1

CSE 390
Lecture 9

Version control and Subversion (svn)

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

2

Working Alone
• Ever done one of the following?

� Had code that worked, made a bunch of changes and saved it, which

broke the code, and now you just want the working version back…

� Accidentally deleted a critical file, hundreds of lines of code gone…

� Somehow messed up the structure/contents of your code base, and

want to just “undo” the crazy action you just did

� Hard drive crash!!!! Everything’s gone, the day before deadline.

• Possible options:

� Save as (MyClass-old.java)

• Ugh. Just ugh. And now a single line change results in duplicating the

entire file…

� RAID to protect your files

• That’s one pricey laptop

3

Working in teams
� Whose computer stores the "official" copy of the project?

• Can we store the project files in a neutral "official" location?

� Will we be able to read/write each other's changes?

• Do we have the right file permissions?

• Lets just email changed files back and forth! Yay!

� What happens if we both try to edit the same file?

• Bill just overwrote a file I worked on for 6 hours!

� What happens if we make a mistake and corrupt an important file?

• Is there a way to keep backups of our project files?

� How do I know what code each teammate is working on?
4

Solution: Version Control
• version control system: Software that tracks and manages changes

to a set of files and resources.

• You use version control all the time

� Built into word processors/spreadsheets/presentation software

• The magical “undo” button takes you back to “the version before my last

action”

� Wiki’s

• Wiki’s are all about version control, managing updates, and allowing

rollbacks to previous versions

5

Software Version control
• Many version control systems are designed and used especially for

software engineering projects

� examples: CVS, Subversion (SVN), Git, Monotone, BitKeeper, Perforce

• helps teams to work together on code projects

� a shared copy of all code files that all users can access

� keeps current versions of all files, and backups of past versions

� can see what files others have modified and view the changes

� manages conflicts when multiple users modify the same file

� not particular to source code; can be used for papers, photos, etc.

• but often works best with plain text/code files

6

Repositories
• repository: Central location storing a copy of all files.

� add: adding a new file to the repository

� check out: downloading a file from the repo to edit it

• you don't edit files directly in the repo; you edit a local working copy

• once finished, the user checks in a new version of the file

� commit: checking in a new version of a file(s) that were checked out

� revert: undoing any changes to a file(s) that were checked out

� update: downloading the latest versions of all files that have been

recently committed by other users

2/27/2012

2

7

Repository Location
• Can create the repository anywhere

� Can be on the same computer that you’re going to work on, which

might be ok for a personal project where you just want rollback

protection

• But, usually you want the repository to be robust:

� On a computer that’s up and running 24/7

• Everyone always has access to the project

� On a computer that has a redundant file system (ie RAID)

• No more worries about that hard disk crash wiping away your project!

• Hint: attu satisfies both of these

8

Subversion

• Subversion: created to repair problems with older CVS system

� supports directories, better renaming, atomic commits, good branching

� currently the most popular free open-source version control system

• installing in Ubuntu:

$ sudo apt-get install subversion

• installing in Fedora:

System->Administration->Add/Remove Software

Search for “subversion”

command description

svnadmin make administrative changes to an SVN repository

svn interact with an SVN repository

9

SVN commands

command description

svn add files schedule files to be added at next commit

svn ci [files] commit / check in changed files

svn co repo check out

svn help [command] get help info about a particular command

svn import directory repo adds a directory into repo as a project

svn merge source1 source2 merge changes

svn revert files restore local copy to repo's version

svn resolve files resolve merging conflicts

svn update [files] update local copy to latest version

others: blame, changelist, cleanup, diff, export, ls/mv/rm/mkdir,

lock/unlock, log, propset

10

Setting up a repo
• on attu, create the overall repository:

� $ svnadmin create repopath

• from attu, add initial files into the repo (optional):

� $ svn import directory repo

• give the repo read/write permissions to your project group

� $ chgrp -R myprojectgroup repopath

� $ chmod -R g+rwX,o-rwx repopath

• Exercise: Create a repository on attu

11

Adding files to a repo
• on your computer, set up a local copy of the repo

� $ svn co svn+ssh://attu.cs.washington.edu/foldername

� or, if you're setting up your local copy on attu as well:

$ svn co file:///homes/iws/username/foldername

� after checkout, your local copy "remembers" where the repo is

• now copy your own files into the repo's folder and add them:

� $ svn add filename

� common error: people forget to add files (won't compile for others)

• added files are not really sent to server until commit

� $ svn ci filename -m "checkin message"

� put source code and resources into repo (no .o files, executables)

12

Committing changes
• updating (to retrieve any changes others have made):

� $ svn update

• examining your changes before commit:

� $ svn status

� $ svn diff filename

� $ svn revert filename

• committing your changes to the server:

� $ svn ci -m “added O(1) sorting feature”

� Version control tip: use good commit messages!

• Exercise: check out the repository, add some files, and commit them

2/27/2012

3

13

Shell/IDE integration

Linux:

NautilusSVN

Windows:

TortoiseSVN

Eclipse:

Subclipse

14

TortoiseSVN
• Available at http://tortoisesvn.net/

• Nice graphical interface for windows users

• To use on a repository located on attu:

� Need to use the svn+ssh syntax:

• svn+ssh://username@attu.cs.washington.edu/repopath

• Exercise: Check out our repository, modify a file, add a file, and

commit our changes

15

What’s actually going on?
• Take a look inside the svn project folder…

� Where the heck are our committed files?

� Take a look at the readme…

• Everything is stored in SVN’s database structure

� So, even though you might have 100 versions of a file, there’s not 100

copies of that file

• Database stores the diff from version to version

• Helps more efficiently store a large codebase across hundreds of versions

� Don’t worry about the details. Just don’t mess with the repository

directly!

16

Merging and conflicts
• merge: Two sets of changes applied at same time to same files

� happens when two users check out same file(s), both change it, and:

• both commit, or

• one changes it and commits; the other changes it and does an update

• conflict: when the system is unable to reconcile merged changes

� resolve: user intervention to repair a conflict. Possible ways:

• combining the changes manually in some way

• selecting one change in favor of the other

• reverting both changes (less likely)

17

Branches
• branch (fork): A second copy of the files in a repository

� the two copies may be developed in different ways independently

� given its own version number in the version control system

� eventually be merged

� trunk (mainline, baseline): the main code copy, not part of any fork

18

A Day in the Life of SVN
• At the beginning of the day/work session, update working copy

� svn update

• Make changes

� svn add, svn delete, svn copy, svn move

• Review changes

� svn status, svn diff

• Fix mistakes

� may need to start from scratch: svn revert

• Get ready to commit changes

� svn update, svn resolve

• Commit changes

� svn commit

• Repeat many, many times

� best practice: commit as soon as changes make a logical unit; commit often

2/27/2012

4

19

Learn what you need
• Creating branches and using merge tools are usually more than you

need for any curriculum projects

� Conflict resolution tools can be confusing

• May be easier to back up my conflicted file, update so I now have the

current version, then manually merge my changes with the updated files

� You probably won’t have a good reason to create a branch in a

department project

• But, they are definitely used in industry, and you should at least

know about them

20

Another view: Git
• Git is another popular version control system.

• Main difference:

� SVN:

• central repository approach – the main repository is the only “true” source,

only the main repository has the complete file history

• Users check out local copies of the current version

� Git:

• Distributed repository approach – every checkout of the repository is a full

fledged repository, complete with history

• Greater redundancy and speed

• Branching and merging repositories is more heavily used as a result

• Takeaway: There are differences beyond just differently named

commands, learn about a tool before using it on a critical project!

21

Wrap-up
• You *will* use version control software when working on projects,

both here and in industry

� Rather foolish not to

� Advice: just set up a repository, even for small projects, it will save you

time and hassle

• Lots of online options for free open source code hosting

� Google code, Git hub, JavaForge, SourceForge…

� All use version control to manage the code database

• Any experiences with version control, positive/negative?

