
1

Link Analysis

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 1

CSE 454 Advanced Internet Systems
University of Washington

Ranking Search Results
• TF / IDF or BM25
• Tag Information

– Title, headers
• Font Size / Capitalization
• Anchor Text on Other Pages
• Classifier Predictions

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 2

Classifier Predictions
– Spam, Adult, Review, Celebrity, …

• Link Analysis
– HITS – (Hubs and Authorities)
– PageRank

Pagerank Intuition

Think of Web as a big graph.

Suppose surfer keeps randomly clicking on the links.
Importance of a page = probability of being on the page

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 3

Derive transition matrix from adjacency matrix

Suppose  N forward links from page P
Then the probability that surfer clicks on any one is 1/N

Matrix Representation
Let M be an NN matrix

muv = 1/Nv if page v has a link to page u
muv = 0 if there is no link from v to u

Let R0 be the initial rank vector

Let Ri be the N1 rank vector for ith iteration
Th R M  R

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 4

Then Ri = M  Ri-1

A B

C
D 0 0 0 ½

0 0 0 ½
1 1 0 0
0 0 1 0

A
B
C
D

A B C D ¼

¼

¼

¼

R0M

Problem: Page Sinks.

• Sink = node (or set of nodes) with no out-edges.
• Why is this a problem?

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 5

A
B

C

Solution to Sink Nodes
Let:
(1-c) = chance of random transition from a sink.
N = the number of pages

…

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 6

K =

M* = cM + (1-c)K
Ri = M* Ri-1

… 1/N
…

…

2

Computing PageRank - Example

M =
A

B

C

D

0 0 0 ½
0 0 0 ½
1 1 0 0
0 0 1 0

A
B
C
D

A B C D

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 7

M*=

0.05 0.05 0.05 0.45
0.05 0.05 0.05 0.45
0.85 0.85 0.05 0.05
0.05 0.05 0.85 0.05

0.176
0.176
0.332
0.316

¼

¼

¼

¼

R0 R30

Ooops

• What About Sparsity?

M*=

0.05 0.05 0.05 0.45
0.05 0.05 0.05 0.45
0.85 0.85 0.05 0.05
0.05 0.05 0.85 0.05

Copyright © 2000-2009 D.S.Weld

…

… 1/N
…

…

M* = cM + (1-c)K

K =

Authority and Hub Pages (1)
• A page is a good authority

(with respect to a given query)

if it is pointed to by many good hubs
(with respect to the query).

• A page is a good hub page

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 9

p g g p g
(with respect to a given query)

if it points to many good authorities
(for the query).

• Good authorities & hubs reinforce

Authority and Hub Pages (2)

Authorities and hubs for a query tend to form a
bipartite subgraph of the web graph.

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 10

(A page can be a good authority and a good hub)

hubs authorities

Linear Algebraic Interpretation

• PageRank = principle eigenvector of M*

– in limit

• HITS = principle eigenvector of M*(M*)T

– Where []T denotes transpose 1 31 2
=

T

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 11

Where [] denotes transpose

• Stability
Small changes to graph  small changes to weights.
– Can prove PageRank is stable
– And HITS isn’t

2 43 4 =

Stability Analysis (Empirical)

• Make 5 subsets by deleting 30% randomly

1 1 3 1 1 1
2 2 5 3 3 2
3 3 12 6 6 3
4 4 52 20 23 4

1 1 119 99

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 12

5 5 171 119 99 5
6 6 135 56 40 8
7 10 179 159 100 7
8 8 316 141 170 6
9 9 257 107 72 9
10 13 170 80 69 18

• PageRank much more stable

3

Practicality
• Challenges

– M no longer sparse (don’t represent explicitly!)
– Data too big for memory (be sneaky about disk usage)

• Stanford Version of Google :
– 24 million documents in crawl

147GB documents

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 13

– 147GB documents
– 259 million links
– Computing pagerank “few hours” on single 1997 workstation

• But How?
– Next discussion from Haveliwala paper…

Efficient Computation: Preprocess

• Remove ‘dangling’ nodes
– Pages w/ no children

• Then repeat process
– Since now more danglers

• Stanford WebBase

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 14

Stanford WebBase
– 25 M pages
– 81 M URLs in the link graph
– After two prune iterations: 19 M nodes

Representing ‘Links’ Table

• Stored on disk in binary format

0

1

4

3

12, 26, 58, 94

5, 56, 69

Source node
(32 bit integer)

Outdegree
(16 bit int)

Destination nodes
(32 bit integers)

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 15

• Size for Stanford WebBase: 1.01 GB
– Assumed to exceed main memory
– (But source & dest assumed to fit)

2 5

, ,

1, 9, 10, 36, 78

Algorithm 1
= 

dest links (sparse) source

source node

de
st

 n
od

e

s Source[s] = 1/N
while residual > {

d Dest[d] = 0
while not Links eof() {

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 16

while not Links.eof() {
Links.read(source, n, dest1, … destn)
for j = 1… n

Dest[destj] = Dest[destj]+Source[source]/n
}
d Dest[d] = (1-c) * Dest[d] + c/N /* dampening c= 1/N */

residual = Source – Dest /* recompute every few iterations */

Source = Dest
}

Analysis

• If memory can hold both source & dest
– IO cost per iteration is | Links|
– Fine for a crawl of 24 M pages
– But web > 8 B pages in 2005 [Google]
– Increase from 320 M pages in 1997 [NEC study]

• If memory only big enough to hold just dest ?

= 
dest links source

source node

de
st

 n
od

e

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 17

If memory only big enough to hold just dest…?
– Sort Links on source field
– Read Source sequentially during rank propagation step
– Write Dest to disk to serve as Source for next iteration
– IO cost per iteration is | Source| + | Dest| + | Links|

• But What if memory can’t even hold dest?
– Random access pattern will make working set = | Dest|
– Thrash!!!

….????

Block-Based Algorithm
• Partition Dest into B blocks of D pages each

– If memory = P physical pages
– D < P-2 since need input buffers for Source & Links

• Partition (sorted) Links into B files
– Linksi only has some of the dest nodes for each source

Specifically, Linksi only has dest nodes such that
• DD*i <= dest < DD*(i+1)
• Where DD = number of 32 bit integers that fit in D pages

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 18

• Where DD = number of 32 bit integers that fit in D pages

= 

dest links (sparse) source

source node

de
st

 n
od

e

4

3

Partitioned Link File

0
1
2

4
3
5

12, 26
5
1, 9, 10

Source node
(32 bit int)

Outdegr
(16 bit)

Destination nodes
(32 bit integer)

2
1

Num out
(16 bit)

0 4 581

Buckets
0-31

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 19

1
1
2

3
5

56
36

1

1

0
1
2

4
3
5

94
69
78

1
1

Buckets
32-63

Buckets
64-95

Analysis of Block Algorithm

• IO Cost per iteration =
– B*| Source| + | Dest| + | Links|*(1+e)
– e is factor by which Links increased in size

• Typically 0.1-0.3
• Depends on number of blocks

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 20

• Algorithm ~ nested-loops join

Comparing the Algorithms

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 21

Comparing the Algorithms

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 22

Adding PageRank to a SearchEngine

• Weighted sum of importance+similarity with query
• Score(q, d)

= wsim(q, p) + (1-w)  R(p), if sim(q, p) > 0
= 0, otherwise

• Where

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 23

– 0 < w < 1

– sim(q, p), R(p) must be normalized to [0, 1].

Summary of Key Points
• PageRank Iterative Algorithm
• Sink Pages
• Efficiency of computation – Memory!

– Don’t represent M* explicitly.
– Minimize IO Cost.

Copyright © 2000-2009 D.S.Weld
10/21/2010 5:30 PM 24

– Break arrays into Blocks.
– Single precision numbers ok.

• Number of iterations of PageRank.
• Weighting of PageRank vs. doc similarity.

