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Goals for Today

 Cryptography Background
 Symmetric (Shared-Key Foundations)

Basic Problem

Alice Bob
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Basic Internet model:  Communications through untrusted 
intermediaries.

I know M (attack privacy)
I can change M (attack integrity)

M’

Important for:  Secure remote logins, file transfers, web 
access, ....

Symmetric Setting

M
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Symmetric setting:  Both parties share some secret 
information, called a key.
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Solution:  Encapsulate and decapsulate messages in some 
secure way.



Achieving Privacy

Encryption schemes
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History

Substitution Ciphers 
• Caesar Cipher

Transposition Ciphers
Codebooks
Machines

Recommended Reading:  The Codebreakers by 
David Kahn. 
• Military uses
• Rumrunners
• ....

Achieving Integrity

Message authentication schemes or message authentication  
codes or MACs
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Achieving Both Privacy and Integrity

Authenticated encryption scheme
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(Authenticated encryption notion is “new” (around 2000), so 
many books and protocols don’t discuss this.  Can be 
subtle!!!)



How this is achieved
Layered approach:

• Cryptographic primitives, like block ciphers, stream 
ciphers, and hash functions

• Cryptographic protocols, like CBC mode encryption, 
CTR mode encryption, HMAC message authentication

Today:
• Start on the above.  Basic concepts.  Basic pitfalls.

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

Asymmetric Setting (NOT today)
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Asymmetric setting:  Public and Secret keys.  (Can help 
establish shared secret keys K.)

Alice Bob
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One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Cipher achieves perfect secrecy if and only if 
there are as many possible keys as possible plaintexts, and
every key is equally likely   (Claude Shannon)

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?



Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #1:  Keys as long as messages.
Impractical in most scenarios 
Still used by intelligence communities

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection

0

0

Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

   00000000…

Disadvantage #3:  Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

   11111111…
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P2
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Learn relationship between plaintexts: 
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

Reducing Keysize 

What do we do when we can’t pre-share huge 
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples:  Block ciphers, stream ciphers



Background:  Permutation
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CODE becomes DCEO

For N-bit input, N! possible permutations
 Idea: split plaintext into blocks, for each block use 

secret key to pick a permutation, rinse and repeat
• Without the key, permutation should “look random”

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

Result should look like a random permutation
• “As if” plaintext bits were randomly shuffled

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then 
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible 

(for decryption)



Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES
Feistel structure

• “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from 
a random permutation (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999:  EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics



Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows 
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column 
(each new byte depends on all bytes in old column)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext 

is larger than 128-bit block size
Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each                      
one separately using the block cipher

Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result 

of encrypting previous blocks
Counter (CTR) mode

• Use block cipher to generate keystream, like a stream 
cipher

 ...


