
Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 Cryptography Background
 Symmetric (Shared-Key Foundations)

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

I know M (attack privacy)
I can change M (attack integrity)

M’

Important for: Secure remote logins, file transfers, web
access,

Symmetric Setting

M
Encapsulate Decapsulate

M

Adversary

Symmetric setting: Both parties share some secret
information, called a key.

Alice Bob
K K

K K

Solution: Encapsulate and decapsulate messages in some
secure way.

Achieving Privacy

Encryption schemes

M C
Encrypt

K

Decrypt

K

M

Adversary

Key K

.Message M

.Ciphertext C

Alice Bob

K K

History

Substitution Ciphers
• Caesar Cipher

Transposition Ciphers
Codebooks
Machines

Recommended Reading: The Codebreakers by
David Kahn.
• Military uses
• Rumrunners
•

Achieving Integrity

Message authentication schemes or message authentication
codes or MACs

Alice Bob

K K

M
valid/
invalidT

MAC

K

(M,T)
Verify

K

Key K

.Message M

. Tag T Adversary

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

(Authenticated encryption notion is “new” (around 2000), so
many books and protocols don’t discuss this. Can be
subtle!!!)

How this is achieved
Layered approach:

• Cryptographic primitives, like block ciphers, stream
ciphers, and hash functions

• Cryptographic protocols, like CBC mode encryption,
CTR mode encryption, HMAC message authentication

Today:
• Start on the above. Basic concepts. Basic pitfalls.

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

Asymmetric Setting (NOT today)

M
Encapsulate Decapsulate

M

Adversary

Asymmetric setting: Public and Secret keys. (Can help
establish shared secret keys K.)

Alice Bob
PKA,SKBPKB,SKA

PKA,SKA PKB,SKB

PKB PKA

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0

0

Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

Disadvantage #3: Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Background: Permutation

1
2
3

4

1
2
3

4
CODE becomes DCEO

For N-bit input, N! possible permutations
 Idea: split plaintext into blocks, for each block use

secret key to pick a permutation, rinse and repeat
• Without the key, permutation should “look random”

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

Result should look like a random permutation
• “As if” plaintext bits were randomly shuffled

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from
a random permutation (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size
Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each
one separately using the block cipher

Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result

of encrypting previous blocks
Counter (CTR) mode

• Use block cipher to generate keystream, like a stream
cipher

 ...

