
User Authentication

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 User Authentication
• Biometrics
• Password Managers
• Authentication schemes

Issues with Biometrics

Private, but not secret
• Maybe encoded on the back of an ID card?
• Maybe encoded on your glass, door handle, ...
• Sharing between multiple systems?

Revocation is difficult (impossible?)
• Sorry, your iris has been compromised, please create a

new one...

Physically identifying
• Soda machine to cross-reference fingerprint with DMV?

Issues with Biometrics

Criminal gives an inexperienced policeman
fingerprints in the wrong order
• Record not found; gets off as a first-time offender

Can be attacked using recordings
• Ross Anderson: in countries where fingerprints are used

to pay pensions, there are persistent tales of “Granny’s
finger in the pickle jar” being the most valuable property
she bequeathed to her family

Birthday paradox
• With false accept rate of 1 in a million, probability of false

match is above 50% with only 1609 samples

Issues with Biometrics

Anecdotally, car jackings went up when it became
harder to steal cars without the key

But what if you need your fingerprint to start your
car?
• Stealing cars becomes harder
• So what would the car thieves have to do?

Risks of Biometrics

http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm

Biometric Error Rates (Adversarial)

Want to minimize “fraud” and “insult” rate
• “Easy” to test probability of accidental misidentification

(fraud)
• But what about adversarial fraud

– Besides stolen fingers

An adversary might try to steal the biometric
information
• Malicious fingerprint reader

– Consider when biometric is used to derive a cryptographic key

• Residual fingerprint on a glass

Voluntary: Making a Mold

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Voluntary: Making a Finger

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Maybe a computer could also forge some biometrics

Authentication by Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples

Password Managers

• Idea: Software application that will store and
manage passwords for you.

• You remember one password.

• Each website sees a different password.

• Examples: PwdHash (Usenix Security 2005) and
Password Multiplier (WWW 2005).

Key ideas

• User remembers a single password

• Password managers

• On input: (1) the user’s single password and
(2) information about the website

• Compute: Strong, site-specific password

• Goal: Avoid problems with passwords

The problem
Alice needs passwords for all the websites that she visits

passwd passwd

passwd

Possible solutions

• Easy to remember: Use same password on all
websites. Use “weak” password.

- Poor security (don’t share password between
bank website and small website)

• More secure: Use different, strong passwords
on all websites.

- Hard to remember, unless write down.

Alternate solution:
Password managers

• Password managers handle creating and
“remembering” strong passwords

• Potentially:

• Easier for users

• More secure

• Examples:

• PwdHash (Usenix Security 2005)

• Password Multiplier (WWW 2005)

PwdHash Password Multiplier

@@ in front of passwords to
protect; or F2

sitePwd = Hash(pwd,domain)

Active with Alt-P or double-
click

sitePwd = Hash(usrname,
pwd, domain)

pwd@@

Prevent phishing attacks

Both solutions target simplicity and transparency.

Usenix 2006:
Usabilty testing

• Are these programs usable? If not, what are the
problems?

• Two main approaches for evaluating usability:

• Usability inspection (no users)

• Cognitive walk throughs

• Heuristic evaluation

• User study

• Controlled experiments

• Real usage

This paper stresses
need to observe real users

Study details

• 26 participants, across various backgrounds (4
technical)

• Five assigned tasks per plugin

• Data collection

• Observational data (recording task outcomes,
difficulties, misconceptions)

• Questionnaire data (initial attitudes, opinions
after tasks, post questionnaires)

[Chiasson, van Oorschot, Biddle]

Task completion results

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Questionnaire responses

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Problem: Transparency

• Unclear to users whether actions successful or
not.

• Should be obvious when plugin activated.

• Should be obvious when password protected.

• Users feel that they should be able to know
their own password.

Problem: Mental model

Users seemed to have misaligned mental models

• Not understand that one needs to put “@@”
before each password to be protected.

• Think different passwords generated for each
session.

• Think successful when were not.

• Not know to click in field before Alt-P.

• PwdHash: Think passwords unique to them.

When “nothing works”

• Tendency to try all passwords

• A poor security choice.

• May make the use of PwdHash or Password
Multiplier worse than not using any password
manager.

• Usability problem leads to security
vulnerabilities.

Challenge-Response (Over Network)

user systemsecret key

challenge value

f(key,challenge)

Why is this better than a password over a network?

secret key

key
key

Any problems remain?

Challenge-Response Authentication

User and system share a secret key
Challenge: system presents user with some string
Response: user computes response based on secret

key and challenge
• Secrecy: difficult to recover key from response

– One-way hashing or symmetric encryption work well

• Freshness: if challenge is fresh and unpredictable,
attacker on the network cannot replay an old response
– For example, use a fresh random number for each challenge

Good for systems with pre-installed secret keys
• Car keys; military friend-or-foe identification

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

Response
{N}K

{N}K
{N}K

Response correct!

Authentication with Shared Secret

?

Alice and Bob share some secret.
How can they identify each other on the network?

What have we learned from the systems we’ve seen?

Alice Bob

“kiwifruit”
“kiwifruit”

Active
attacker

not just eavesdrops, but
inserts his own messages

Challenge-Response

Alice Bob

“kiwifruit”
“kiwifruit”

Active
attacker

Fresh, random RR

hash(“kiwifruit”,R) hash(“kiwifruit”,R)

 Man-in-the-middle attack on challenge-response
• Attacker successfully authenticates as Alice by simple replay

 This is an attack on authentication, not secrecy
• Attacker does not learn the shared secret

 However, response opens the door to offline dictionary attack

Encrypted Timestamp

Alice Bob

KEYKEY

EncryptKEY(time)

EncryptKEY(time)

 Requires synchronized clocks
• Bob’s clock must be secure, or else attacker will roll it back and

reuse an old authentication message from Alice

 Attacker can replay within clock skew window

Replace with
(n-1, x)

Lamport’s Hash

Alice Bob

n, y=hashn(“kiwifruit”)

x=hash(…(hash(“kiwifruit”))

“kiwifruit”

n

n-1 times

Verifies y=hash(x)?

 Main idea: “hash stalk”
• Moving up the stalk (computing the next hash) is easy, moving

down the stalk (inverting the hash) is hard
• n should be large (can only use it for n authentications)

 For verification, only need the tip of the stalk

hashm(“kiwifruit”)

“Small n” Attack

Alice Bob

n, y=hashn(“kiwifruit”)

 First message from Bob is not authenticated!
 Alice should remember current value of n

“kiwifruit”

Real n

Verifies y=hash(x)
Yes!

?Fake, small m

x=hashn-1(“kiwifruit”)

Easy to compute hashn-1(…)
if know hashm(…) with m<n

Adversaries To Consider

Eavesdropper
Pretend to be Bob and accept connections from

Alice
 Initiate conversation pretending to be Alice
Read Alice’s database
Read Bob’s database
Modify messages in transit between Alice and Bob
Any combination of the above
Offline vs online guessing attacks

