CSE 503: Software Engineering

Software Architecture

Jonathan Aldrich University of Washington Department of Computer Science and Engineering Winter 2002

Programming in the Large vs. Programming in the Small

- Large systems bring different challenges
- What problems have you experienced?
 - Where/how do I extend the system?
 - What invariants hold of a large data structure?
 - What are a module's clients/what does it use?
 - Tight coupling
 - Large interfaces

Programming in the Large vs. Programming in the Small

- Large systems bring different challenges
- How do you deal with them?
 - Imitate examples
 - Have someone explain/draw a picture
 - Trace through code
 - Grep or other tools
 - Read documentation

Software Architecture

- The highest level of design - The gross organization of a software system - Issues: decomposition, control flow, communication, concurrency, distribution
- A set of *components*, *connections* between the components, and *constraints* on how they interact

Architectural Styles

- System-level design patterns - Client-server or 3-tier
 - Layered system
 - Pipeline architecture
- · Represent design knowledge
 - Vocabulary of concepts
 - Constraints on implementation

 - Benefits/drawbacks of alternatives

- Analysis for throughput, deadlock
- Drawbacks?

Implicit Invocation Style

- As discussed before!
- Invariant
 - Announcers don't know about listeners
- Advantages
 - Easy to add/remove/replace components
- Drawbacks
 - Hard to reason about system

Architectural Analysis

- Example: Wright
- An Architecture Description Language (ADL)
- Models computation and communication – Finite state machines with event transitions – Use CSP notation and semantics
- Analysis
 - Find deadlock
 - See if components are compatible

Recap

- Architectural Styles
 - Vocabulary for design
 - Encapsulate design knowledge
 - Constrain design
 - Have specific advantages and disadvantages
- · Analysis can enable more effective design
- But what about the implementation?