
1

CSE 503: Software Engineering

Software Architecture

Jonathan Aldrich

University of Washington

Department of Computer Science and Engineering

Winter 2002

Programming in the Large vs.
Programming in the Small

• Large systems bring different challenges

• What problems have you experienced?
– Where/how do I extend the system?

– What invariants hold of a large data structure?

– What are a module’s clients/what does it use?

– Tight coupling

– Large interfaces

Programming in the Large vs.
Programming in the Small

• Large systems bring different challenges

• How do you deal with them?
– Imitate examples

– Have someone explain/draw a picture

– Trace through code

– Grep or other tools

– Read documentation

Software Architecture

• The highest level of design
– The gross organization of a software system
– Issues: decomposition, control f low,

communication, concurrency, distribution

• A set of components, connections between
the components, and constraints on how
they interact

parser codegen scanner

Compiler

Benefits of Architecture

• Specification of high-level system design
– Program understanding
– Analysis
– Language and tool support

• Taxonomy of system design
– Advantages/disadvantages
– Capturing design experience
– Relationship between systems

parser codegen scanner

Compiler
Architectural Styles

• System-level design patterns
– Client-server or 3-tier
– Layered system
– Pipeline architecture

• Represent design knowledge
– Vocabulary of concepts
– Constraints on implementation
– Benefits/drawbacks of alternatives

2

Pipe and Filter Style

• Filters process data, streams connect filters
– No shared state
– No knowledge of other filters

• Design choices
– Linear (pipeline) vs. connection graph
– Incremental vs. batch processing

• Canonical examples: compilers, unix tools
– Others?

Pipe and Filter Style

• Advantages
– Easy to change: add/remove/replace filters
– Filters need only agree on data (e.g., XML)
– Inherent scalability and concurrency
– Analysis for throughput, deadlock

• Drawbacks?

Layered Style

• As discussed before!
• Invariant

– Each layer uses only the layer (or layers) below

• Advantages
– Easy to add new functionality in a new layer
– Limited dependencies ease change
– Can swap in different layer implementations

• Drawbacks?

Object-Oriented/ADT Style

• A set of communicating objects
– Each is responsible for its (hidden)

representation

• What do you think of this style?

Implicit Invocation Style

• As discussed before!

• Invariant
– Announcers don’ t know about listeners

• Advantages
– Easy to add/remove/replace components

• Drawbacks
– Hard to reason about system

Repository Style

• Data stored in a central repository
– Independent components operate on the store

• Pure form: may not communicate in any other way

– Components may be triggered by data

• Advantages?
• Drawbacks?

3

Oscilloscope Case Study

• Initial OO architecture
– Showed data structures

– Little organizational guidance

Oscilloscope Case Study

• Second architecture: layers
– Partitions functionality

– But, UI has to touch all layers

Oscilloscope Case Study

• Final architecture: modified pipe & filter
– Matches data flow intuition

– UI has control connection to each filter

– Many pipes don’ t copy data

Architectural Analysis

• Example: Wright
– An Architecture Description Language (ADL)

• Models computation and communication
– Finite state machines with event transitions
– Use CSP notation and semantics

• Analysis
– Find deadlock
– See if components are compatible

Recap

• Architectural Styles
– Vocabulary for design
– Encapsulate design knowledge
– Constrain design
– Have specific advantages and disadvantages

• Analysis can enable more effective design

• But what about the implementation?

