CSE 503: Software Engineering
Software Architecture

Jonathan Aldrich
University of Washington
Department of Computer Science and Engineering
Winter 2002

Programming in the Large vs.
Programming in the Small

* Large systems bring different challenges

* What problems have you experienced?
— Where/how do | extend the system?
— What invariants hold of alarge data structure?
— What are amodul€' s clients/what doesit use?
— Tight coupling
— Large interfaces

Programming in the Large vs.
Programming in the Small

« Large systems bring different challenges
« How do you deal with them?

— Imitate examples

— Have someone explain/draw a picture

— Trace through code

— Grep or other tools

— Read documentation

Software Architecture
Conpi l er
[scamner b parser p—] cotegen |

* The highest level of design
— The gross organization of a software system
— Issues: decomposition, control flow,
communication, concurrency, distribution
A set of components, connections between
the components, and constraints on how
they interact

Benefits of Architecture
Conpi l er

[scamer b parser b coseen |

¢ Specification of high-level system design
— Program understanding
— Analysis
— Language and tool support
¢ Taxonomy of system design
— Advantages/disadvantages
— Capturing design experience
— Relationship between systems

Architectural Styles

« System-level design patterns
— Client-server or 3-tier
— Layered system
— Pipeline architecture
* Represent design knowledge
— Vocabulary of concepts
— Constraints on implementation
— Benefits/drawbacks of alternatives

Pipe and Filter Style

L s
”
Computation g,
« Filters process data, streams connect filters
— No shared state
— No knowledge of other filters
» Design choices
— Linear (pipeline) vs. connection graph
— Incremental vs. batch processing
¢ Canonical examples: compilers, unix tools
— Others?

Pipe and Filter Style

— e
”
Computation g, .

e Advantages

— Easy to change: add/remove/replace filters

— Filters need only agree on data (e.g., XML)

— Inherent scalability and concurrency

— Analysis for throughput, deadlock

* Drawbacks?

Layered Style

sually
rocecyre galls

» Asdiscussed before!

* Invariant R lerents” v
— Each layer uses only the layer (or layers) below
¢ Advantages

— Easy to add new functionality in a new layer

— Limited dependencies ease change

— Can swap in different layer implementations
» Drawbacks?

Object-Oriented/ADT Style

A set of communicating objects

— Eachisresponsible for its (hidden)
representation

« What do you think of this style?

Implicit Invocation Style

¢ Asdiscussed before!
e Invariant

— Announcers don’t know about listeners
Advantages

— Easy to add/remove/replace components
Drawbacks

— Hard to reason about system

Repository Style
j%

Memory

¢ Datastored In acal repository
— Independent components operate on the store
« Pure form: may not communicate in any other way
— Components may be triggered by data
¢ Advantages?
¢ Drawbacks?

Oscilloscope Case Study

| ™~

[maxminwvim] Geywvim] [accumulate wvim
« |nitial OO architecture
— Showed data structures
— Little organizational guidance

Oscilloscope Case Study

..Hardware
Digitization

Visualization

User interface
 Second architecture: layers
— Partitions functionality
— But, Ul hasto touch al layers

Oscilloscope Case Study

« Final architecture: modified pipe & filter
— Matches data flow intuition
— Ul has control connection to each filter
— Many pipes don’t copy data

Architectural Analysis

e Example: Wright
— An Architecture Description Language (ADL)
« Models computation and communication
— Finite state machines with event transitions
— Use CSP notation and semantics
e Analysis
— Find deadlock
— Seeif components are compatible

Recap

 Architectural Styles
— Vocabulary for design

— Encapsulate design knowledge
— Constrain design

— Have specific advantages and disadvantages
« Analysis can enable more effective design

< But what about the implementation?

