
1

CSE 503: Software Engineering

Connecting Architecture to
Implementation

Jonathan Aldrich

University of Washington

Department of Computer Science and Engineering

Winter 2002

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 2

Design � Implementation

• Architecture captures system design

• But does it match the implementation?
– What if the program evolves?

– May leave out important details

– May be misleading

• Must keep architecture consistent if we
want it to continue to be useful!

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 3

One Approach: ADL Tools

• Rapide: simulates architecture with code
– Flags error if event sequence doesn’ t match

• C2: run time library support
• UniCon: code generation from architecture

• Fundamental issue:
– No guarantee that architecture is accurate

picture of code

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 4

Another Approach: Modules

• Basic module systems
– File system, packages, libraries

• Advanced module systems
– ML, Units, Knit, Jiazzi

• Strengths
– Encapsulate components
– Linking shows connections
– Very flexible

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 5

Module Weaknesses

• Modules show only static structure
– Interconnections between component instances

– Dynamic changes to structure

• Modules don’ t show all control & data flow
– Especially with objects (or first-class functions)

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 6

ArchJava

• Specifies architecture within Java code
– Similar to other ADLs

• Verifies that control flow conforms to arch.
– Our key technical contribution

• Is flexible
– Supports dynamically changing architectures
– Allows common implementation techniques

• May aid in software evolution tasks
– Two case studies on 12,000-line programs

2

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 7

A Parser Component

public component class Par ser {
public port i n {
requires Token next Token() ;

}
public port out {
provides AST par se() ;

}

• Component class
– Defines architectural object
– Must obey architectural constraints

• Components communicate through ports
– A two-way interface
– Define provided and required methods

Parser out i n

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 8

A Parser Component

public component class Par ser {
public port i n {
requires Token next Token() ;

}
public port out {
provides AST par se() ;

}
private AST par se() {

Token t ok=i n. next Token() ;
return par seExpr (t ok) ;

}
private AST par seExpr (Token t ok) { . . . }
. . .

}

Parser out i n

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 9

A Parser Component

public component class Par ser {
public port i n {
requires Token next Token() ;

}
public port out {
provides AST par se() ;

}

Ordinary (non-component) objects
• Passed between components
• Sharing is permitted
• Can use just as in Java!

Parser out i n

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 10

Component Composition

public component class Cal cul at or {
private final Cal cul at or UI ui = new Cal cul at or UI () ;
private final Scanner scanner = new Scanner () ;
private final Par ser par ser = new Par ser () ;
private final Eval uat or eval = new Eval uat or () ;
connect ui . dat a, scanner . i n;
connect scanner . out , par ser . i n;
connect par ser . out , eval . i n;
connect ui . r equest , eval . out ;

Connections
– Bind required methods to provided methods

parser eval scanner

Calculator

out i n out i n

ui dat a

i n out

r eques t

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 11

The $64,000 Questions

• Does ArchJava guarantee architectural integrity?

• Is ArchJava expressive enough for real systems?

• Can ArchJava aid software evolution tasks?

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 12

Architectural Integrity

Three key properties [Luckham & Vera, 95]
Decomposition

For each component in the architecture there’s a corresponding
component in the implementation

Interface conformance
Implementation components conform to the interfaces in the
architecture

Communication Integrity
Components in the implementation may only communicate with
components they are connected to in the architecture

parser codegen scanner

Compiler

3

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 13

The ArchJava Approach

Put the architecture into the implementation
Decomposition: true by definition!

For each component in the architecture there’s a corresponding
component in the implementation

Interface conformance: just typechecking!
Implementation components conform to the interfaces in the
architecture

Communication Integrity: still hard!
Components in the implementation may only communicate with
components they are connected to in the architecture

parser codegen scanner

Compiler

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 14

• Architecture allows
– Calls between connected components

– Calls from a parent to its subcomponents

Communication Integrity

parser codegen scanner

Compiler

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 15

• Architecture allows
– Calls between connected components

– Calls from a parent to its subcomponents

• Architecture forbids
– External calls to subcomponents

– Calls between unconnected subcomponents

Communication Integrity

parser codegen scanner

Compiler

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 16

• Other integrity violations

Communication Integrity

parser codegen scanner

compiler1

parser codegen scanner

compiler2

parser codegen scanner

compiler1

parser codegen scanner

compiler2

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 17

• No method calls permitted from one
component to another except
– From a parent to its nested subcomponents

– Through connections in the architecture

• Supports reasoning about control flow
– Current work: Data flow

• Shared object references

Comm. Integrity in ArchJava

parser codegen scanner

Compiler

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 18

Enforcing Architectural Integrity

• Q: How does ArchJava prohibit illegal
component method calls?

• A: Through its type system
– Component classes follow special type rules

– Advantages:
• Consistency: rules checked on every compile

• Can prove soundness

– Drawbacks? Alternatives?

4

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 19

Enforcing Architectural Integrity

• Integrity for direct method calls:
– All calls are to this or to a subcomponent

• Components can only get typed references
to their subcomponents
– No component types in port interfaces

– No fields of component type in objects

– Casts to component type check the parent

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 20

The $64,000 Questions

• Does ArchJava guarantee architectural integrity?
– Yes! (for control flow)

• Is ArchJava expressive enough for real systems?
– Two case studies

• 12,000 lines of Java code each

• Asked developer to draw architecture

• Tried to specify architecture in ArchJava

• Can ArchJava aid software evolution tasks?

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 21

Aphyds
Architecture

• UI above
– Main window

– 3 secondary windows

• Circuit DB below
– Central DB

– 5 comp. Modules

• Arrows
– Data & control flow

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 22

Aphyds Architecture
• Informal drawing

– Common in practice!

• Leaves out details
– What’s inside the components, connections?
– Ci r cui t Vi ewer has internal structure

• Some surprises
– Missing paths
– Component lifetimes

Hypothesis: Developers have a conceptual model of their
architecture that is mostly accurate, but this model
may be a simplification of reality, and it is often not
explicit in the code.

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 23

Architectural Comparison

Automatically Generated
Architectural Visualization

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 24

Advantages of ArchJava

• Complete
– Can “zoom in” on details

• Consistency checking
– Original architecture had minor flaws

• Evolves with program
• Low cost

– 30 hours, or 2.5 hours/KLOC
– Includes substantial refactoring
– 12.1 KLOC => 12.6 KLOC

Hypothesis: Applications can be translated into ArchJava
without excessive effort or code bloat.

5

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 25

The $64,000 Questions

• Does ArchJava guarantee architectural integrity?
– Yes! (for control flow)

• Is ArchJava expressive enough for real systems?
– Yes! (for one small but realistic system)

• Can ArchJava aid software evolution tasks?
– Three experiments

• Understanding Aphyds communication

• Refactoring Aphdys

• Reparing a defect

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 26

Program Understanding
Communication between the main structures is awkward, especially

the change propagation messages
– Aphyds developer

• Inter-component communication analysis
– Message purpose, callers, callees, triggers
– Goal: refactor program source

• Difficult in original program
– Confusing method names
– Transitive method dependencies
– Methods had multiple purposes

• e.g. assign data & refresh screen

– Hard to tell what methods called by each object

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 27

Program Understanding
• Communication analysis easier in ArchJava

– Provided and required interfaces
– Connections show relationships
– Ports show relevant methods
– Ports group related methods

• Several refactoring opportunities
– Window refresh, data invalidation

• Developer’s problem areas!

Hypothesis: Expressing software architecture in
ArchJava highlights refactoring opportunities by
making communication protocols explicit.

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 28

Implicit Refactoring
• Law of Demeter [Lieberherr et. al.]

– Only talk with your immediate neighbors

– Reduces system coupling

• Example violation

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Problems
– Depends on every link in chain

– Programs are fragile, change is difficult

ChannelRouter CircuitDisplayer CircuitViewer ChannelRouter

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 29

Implicit Refactoring
• Communication Integrity � Law of Demeter

– Components only talk with connected components

• Example violation

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Illegal in ArchJava! Instead…
port window {
requires void enableMenuItem(int menu, boolean enabled);

... }

window.enableMenuItem(CHANNEL_ROUTE, b);

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

ChannelRouter CircuitDisplayer CircuitViewer ChannelRouter

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 30

Defect Repair
• Fix same Aphyds bug

– First in ArchJava, then Java

• ArchJava required more coding
– Had to add new ports & connections

• Java took longer
– Difficult to find object involved in fix
– Even though I’d already fixed the bug in ArchJava!

getDisplayer().placeroutedialog1.placeRouteDisplayer1
.getCircuitGlobalRouter().doGlobalRouting();

Hypothesis: An explicit software architecture makes it
easier to identify and evolve the components involved in
a change.

6

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 31

The $64,000 Questions

• Does ArchJava guarantee architectural integrity?
– Yes! (for control flow)

• Is ArchJava expressive enough for real systems?
– Yes! (for one small but realistic system)

• Can ArchJava aid software evolution tasks?
– Preliminary experience suggests:

• ArchJava highlights refactoring opportunities

• ArchJava encourages loose coupling

• ArchJava may aid defect repair

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 32

Discussion

• Advantages of approach?

• Disadvantages of approach?

• Alternative approaches?

February 27, 2002 Jonathan Aldrich - 503 - ArchJava 33

Future Architecture Research

• Empirical studies

• Other domains & properties

• More flexible notations

• Analysis:
– architecture

�
requirements

– conformance to architectural style

– consistency

