
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Very High-Level View

• Requirements define the clients’ view
–What the system is supposed to do
– Focuses on external behavior

• Design captures the developers’ view
– How the requirements are realized
– Defines the internal structure of the solution

• But: “What” vs. “How”
• Also, reminiscent of the Brian Cantwell Smith diagram in
Jackson’s video

3

Today

• Some general background on design
– Decomposition, composition
– Managing complexity, anticipating change
– Etc.

• Monday
– Information hiding

• Wednesday
– Layering/ “uses” relation

4

Complexity

• “Software entities are more complex for
their size than perhaps any other human
construct, because no two parts are alike (at
least above the statement level). If they are,
we make the two similar parts into one…
In this respect software systems differ
profoundly from computers, buildings, or
automobiles, where repeated elements
abound.” —Brooks, 1986

5

Continuous & iterative

• High-level (“architectural”) design
– What pieces?

– How connected?

• Low-level design
– Should I use a hash table or binary search tree?

• Very low-level design
– Variable naming, specific control constructs, etc.

– About 1000 design decisions at various levels are made
in producing a single page of code

6

Multiple design choices

• There are multiple (perhaps unbounded) designs
that satisfy (at least the functional) aspects of a
given set of requirements

• How does one choose among these alternatives?
– How does one even identify the alternatives?

– How does one reject most bad choices quickly?

– What criteria distinguish good choices from bad
choices?



2

7

What criteria?

• In general, there are three high level
answers to this question: and, it is very
difficult to answer precisely
1. Satisfying functional and performance

requirements
• Maybe this is too obvious to include
• Often not achieved, though

2. Managing complexity
3. Accommodating future change

8

1. Managing complexity

• “The technique of mastering complexity has been known
since ancient times: Divide et impera (Divide and Rule).”
—Dijkstra, 1965

• “…as soon as the programmer only needs to consider
intellectually manageable programs, the alternatives he is
choosing from are much, much easier to cope with.” —

Dijkstra, 1972

• The complexity of the software systems we are asked to
develop is increasing, yet there are basic limits upon our
ability to cope with this complexity. How then do we
resolve this predicament?” —Booch, 1991

9

Divide and conquer

• We have to decompose large systems to be able to build
them
– The “modern” problem of composing systems from pieces is

equally or more important
• It’s not modern, though: we’ve had to compose for as long as we have

decomposed

– And closely related to decomposition in many ways

• For software, decomposition techniques are distinct from
those used in physical systems
– Fewer constraints are imposed by the material

– Shanley principle?

10

Composition

• “Divide and conquer. Separate your concerns.
Yes. But sometimes the conquered tribes must be
reunited under the conquering ruler, and the
separated concerns must be combined to serve a
single purpose.”

—M. Jackson, 1995
• Jackson’s view of composition as printing with

four-color separation
• Composition in programs is not as easy as

conjunction in logic

11

Benefits of decomposition

• Decrease size of tasks

• Support independent
testing and analysis

• Separate work assignments

• Ease understanding

• In principle, can significantly
reduce paths to consider by
introducing an interface

12

Which decomposition?

• How do we select a decomposition?
– We determine the desired criteria
– We select a decomposition (design) that will achieve those criteria

• In theory, that is; in practice, it’s hard to
– Determine the desired criteria with precision
– Tradeoff among various conflicting criteria
– Figure out if a design satisfies given criteria
– Find a better one that satisfies more criteria

• In practice, it’s easy to
– Build something designed pretty much like the last one
– This has benefits, too: understandability, properties of the pieces,

etc.



3

13

Structure

• The focus of most design approaches is
structure

• What are the components and how are they
put together?

• Behavior is important, but largely indirectly
– Satisfying functional and performance
requirements

14

So what happens?

• People often buy into a particular approach
or methodology
– Ex: structured analysis and design, object-oriented

design, JSD, Hatley-Pirbai, etc.

• “Beware a methodologist who is more
interested in his methodology than in your
problem.” —M. Jackson

15

Conceptual integrity

• Brooks and others assert that conceptual integrity is a
critical criterion in design
– “It is better to have a system omit certain anomalous features and

improvements, but to reflect one set of design ideas, than to have
one that contains many good but independent and uncoordinated
ideas.” —Brooks, MMM

• Such a design often makes it far easier to decide what is
easy and reasonable to do as opposed to what is hard and
less reasonable to do
– This is not always what management wants to hear

16

2. Accommodating change

• “…accept the fact of change as a way of
life, rather than an untoward and annoying
exception.” —Brooks, 1974

• Software that does not change becomes
useless over time. —Belady and Lehman

• Internet time makes the need to
accommodate change even more apparent

17

Anticipating change

• It is generally believed that to accommodate
change one must anticipate possible
changes
– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing)
changes, one defines additional criteria for
guiding the design activity

• It is not possible to anticipate all changes

18

Rationalism vs. empiricism

• Brooks’ 1993 talk
“The Design of Design”

• rationalism — the doctrine that knowledge
is acquired by reason without resort to
experience [WordNet]

• empiricism — the doctrine that knowledge
derives from experience [WordNet]



4

19

Examples

•Life
–Aristotle vs. Galileo

–France vs. Britain

–Descartes vs. Hume

–Roman law vs. Anglo-
Saxon law

•Software (Wegner)

– Prolog vs. Lisp

– Algol vs. Pascal

– Dijkstra vs. Knuth

– Proving programs vs.
testing programs

20

Brooks’ view

• Brooks says he is a “thoroughgoing, died-in-the-wool
empiricist.

• “Our designs are so complex there is no hope of getting
them right first time by pure thought. To expect to is
arrogant.

• “So, we must adopt design-build processes that incorporate
evolutionary growth …
– “Iteration, and restart if necessary
– “Early prototyping and testing with real users”

• Maybe this is more an issue of requirements and
specification, but I think it applies to design, too
– “Plan to throw one away, you will anyway.”

21

Properties of design

• Cohesion

• Coupling

• Complexity

• Correctness

• Correspondence

• Makes designs “better”, one presumes

• Worth paying attention to

22

Cohesion

• The reason that elements are found together
in a module
– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is
useful

• During maintenance, one of the major
structural degradations is in cohesion

23

Coupling

• Strength of interconnection between modules

• Hierarchies are touted as a wonderful coupling
structure, limiting interconnections
– But don’t forget about composition, which requires

some kind of coupling

• Coupling also degrades over time
– “I just need one function from that module…”

– Low coupling vs. no coupling

24

Unnecessary coupling hurts

• Propagates effects of changes more widely

• Harder to understand interfaces
(interactions)

• Harder to understand the design

• Complicates managerial tasks

• Complicates or precludes reuse



5

25

It’s easy to...

• ...reduce coupling by calling a system a
single module

• …increase cohesion by calling a system a
single module

⇒ No satisfactory measure of coupling
– Either across modules or across a system

26

Complexity

• Well, yeah, simpler designs are better, all
else being equal

• But, again, no useful measures of
design/program complexity exist
– Although there are dozens of such measures

– My understanding is that, to the first order,
most of these measures are linearly related to
“lines of code”

27

Correctness

• Well, yeah
• Even if you “prove” modules are correct,
composing the modules’ behaviors to
determine the system’s behavior is hard

• Leveson and others have shown clearly that
a system can fail even when each of the
pieces work properly
– Many systems have “emergent” properties

28

Correspondence

• “Problem-program mapping”

• The way in which the design is
associated with the requirements

• The idea is that the simpler the
mapping, the easier it will be to
accommodate change in the
design when the requirements
change

• M. Jackson: problem frames
–In the style of Polya

Requirements

Design

Implementation

29

Functional decomposition

• Divide-and-conquer based on functions
• input;

• compute;

• output

• Then proceed to decompose compute

• This is stepwise refinement (Wirth, 1971)

• There is an enormous body of work in this area, including
many formal calculi to support the approach
– Closely related to proving programs correct

• More effective in the face of stable requirements

30

Question

• To what degree do you consider your systems
– as having modules?

– as consisting of a set of files?

• This is a question of physical vs. logical structure
of programs
– In some languages/environments, they are one and the

same

– Ex: Smalltalk-80



6

31

Aside: Physical structure

• Almost all the literature focuses on logical
structures in design

• But physical structure plays a big role in
practice
– Sharing
– Separating work assignments
– Degradation over time

• Why so little attention paid to this?

32

Wrap-up

• High-level, but needed for basic discussion
on design

• Monday: read the Parnas information hiding
paper


