
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Information hiding

• Information hiding is perhaps the most
important intellectual tool developed to
support software design [Parnas 1972]
– Makes the anticipation of change a centerpiece
in decomposition into modules

• Provides the fundamental motivation for
abstract data type (ADT) languages
– And thus a key idea in the OO world, too

3

Basics of information hiding

• Modularize based on anticipated change
– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations
– Implementations capture decisions likely to change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

• Modules are also work assignments

4

Anticipated changes

• The most common anticipated change is
“change of representation”
– Anticipating changing the representation of
data and associated functions (or just functions)

– Again, a key notion behind abstract data types

• Ex:
– Cartesian vs. polar coordinates; stacks as linked
lists vs. arrays; packed vs. unpacked strings

5

Claim

• We less frequently change representations than we used to
– We have significantly more knowledge about data structure design

than we did 25 years ago
– Memory is less often a problem than it was previously, since it’s

much less expensive

• Therefore, we should think twice about always anticipating
that representations will change
– This is important, since we can’t simultaneously anticipate all

changes
– Ex: Changing the representation of null-terminated strings in Unix

systems wouldn’t be sensible
• And this doesn’t represent a stupid design decision

6

Other anticipated changes?

• Information hiding isn’t only ADTs
• Algorithmic changes

– (These are almost always part and parcel of ADT-based
decompositions)

– Monolithic to incremental algorithms
– Improvements in algorithms

• Replacement of hardware sensors
– Ex: better altitude sensors

• More?



2

7

Ubiquitous computing domain

• Portolano is a UW CSE project on this topic
– Devices everywhere, handhelds, on-body devices,

automated laboratories, etc.

• The set of anticipated changes is significantly
different than in many other domains
– Data is more stable than computations

– Must accommodate diversity in communication speed,
reliability, etc.

• Interesting domain for information hiding

8

Central premise I

• We can effectively anticipate changes
– Unanticipated changes require changes to interfaces or

(more commonly) simultaneous changes to multiple
modules

• How accurate is this premise?
– We have no idea
– There is essentially no research about whether

anticipated changes happen
– Nor do we have disciplined ways to figure out how to

better anticipate changes

9

The A-7 Project

• In the late 1970’s, Parnas led a project to redesign
the software for the A-7 flight program
– One key aspect was the use of information hiding

• The project had successes, including a much
improved specification of the system and the
definition of the SCR requirements language

• But little data about actual changes was gathered

10

Central premise II

• Changing an implementation is the best change,
since it’s isolated

• This may not always be true
– Changing a local implementation may not be easy
– Some global changes are straightforward

• Mechanically or systematically

– VanHilst’s work showed an alternative
• Using parameterized classes with a deferred supertype

[ISOTAS, FSE, OOPSLA]

– Griswold’s work on information transparency

11

Central premise III

• The semantics of the module must remain
unchanged when implementations are
replaced
– Specifically, the client should not care how the
interface is implemented by the module

• But what captures the semantics of the
module?
– The signature of the interface? Performance?
What else?

12

Central premise IV

• One implementation can satisfy multiple
clients
– Different clients of the same interface that need
different implementations would be counter to
the principle of information hiding
• Clients should not care about implementations, as
long as they satisfy the interface

– Kiczales’ work on open implementations



3

13

Information hiding reprise

• It’s probably the most important design
technique we know

• And it’s broadly useful

• It raised consciousness about change

• But one needs to evaluate the premises in
specific situations to determine the actual
benefits (well, the actual potential benefits)

14

Information Hiding and OO

• Are these the same? Not really
– OO classes are chosen based on the domain of
the problem (in most OO analysis approaches)

– Not necessarily based on change

• But they are obviously related (separating
interface from implementation, e.g.)

• What is the relationship between sub- and
super-classes?

15

Layering [Parnas 79]

• A focus on information hiding modules
isn’t enough

• One may also consider abstract machines
– In support of program families

• Systems that have “so much in common that it pays
to study their common aspects before looking at the
aspects that differentiate them”

• Still focusing on anticipated change

16

The uses relation

• A program A uses a program B if the
correctness of A depends on the presence of
a correct version of B

• Requires specification and implementation
of A and the specification of B

• Again, what is the “specification”? The
interface? Implied or informal semantics?
– Can uses be mechanically computed?

17

uses vs. invokes

• These relations
often but do not
always coincide

• Invocation without
use: name service
with cached hints

• Use without
invocation:
examples?

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

ipAddr := lookup(hostName)

endif

18

Parnas’ observation

• A non-hierarchical uses relation makes it
difficult to produce useful subsets of a
system
– It also makes testing difficult

– (What about upcalls?)

• So, it is important to design the uses
relation



4

19

Criteria for uses(A,B)

• A is essentially simpler because it uses B

• B is not substantially more complex because
it does not use A

• There is a useful subset containing B but not
A

• There is no useful subset containing A but
not B

20

Layering in THE
(Dijkstra’s layered OS)

• OK, those of you who took OS

• How was layering used, and how does it
relate to this work?

• (For thinking about off-line, or for email
discussion)

21

Modules and layers interact?

• Information
hiding
modules and
layers are
distinct
concepts

• How and
where do they
overlap in a
system?

Process ADT

Segment ADT

Process
Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

22

Language support

• We have lots of language support for information
hiding modules
– C++ classes, Ada packages, etc.

• We have essentially no language support for
layering
– Operating systems provide support, primarily for

reasons of protection, not abstraction

– Big performance cost to pay for “just” abstraction

23

Next lecture

• Implicit invocation
– Essentially, event-based design


