
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Implicit invocation

• Components announce events that other components can
choose to respond to

• Components register interest in those events that they want
to respond to

• In implicit invocation, the invokes relation is the inverse
of the names relation

• Invocation does not require ability to name

• The central goal is to ease change: the components invoked
can be changed without modifying the announcing
component

3

Old II mechanisms

• Field [Reiss], DEC FUSE, HP Softbench, etc.
– Components announce events as ASCII messages

– Components register interest using regular expressions

– Centralized multicast message server

• Smalltalk’s Model-View-Controller
– Registering with objects

– Separating UI views from internal models

– May request permission to change

4

New II mechanisms:
or extensive uses of them

• JDK’s
– Different versions have somewhat different
event models

• Java beans, Swing, …

• CORBA and COM

5

Objective

• Most of you are at least comfortable with using
events
– Probably primarily in the context of existing

components and frameworks

• Several issues to cover
– Thinking of implicit invocation as more than “just”

events
– Identifying some concrete software engineering reasons

to use it
– Identifying some limitations

6

Not just indirection

• There is often confusion between implicit invocation and
indirect invocation
– Calling a virtual function is a good example of indirect invocation

• The calling function doesn’t know the precise callee, but it knows it is
there and that there is only one

• Not true in general in implicit invocation

• An announcing component should not use (in the Parnas
sense) any responding components
– This is extremely difficult to define precisely
– Roughly, the post-condition of the announcing component should

not depend on any computation of the implicitly invoked
components



2

7

Mediators

• One style of using implicit invocation is the
use of mediators [Sullivan & Notkin]

• This approach combines events with entity-
relationship designs

• The intent is to ease the development and
evolution of integrated systems
– Manage the coupling and isolate behavioral
relationships between components

8

Experience

• A radiation treatment planning (RTP) system
(Prism) was designed and built using this
technique
– By a radiation oncologist [Kalet]

– A third generation RTP system

– In clinical use at UW and several other major research
hospitals

– http://www.radonc.washington.edu/physics/prism/

– See the screenshots on next slides

9 10

11 12

Example problem

• Given two sets S1 and S2, how do you
ensure that they are always consistent?
– You can independently add or delete elements
from either set

• Ideas?



3

13

A standard solution

• Encapsulate both S1 and S2 in a component
that
– Exports insert-S1, insert-S2, delete-S1, delete-
S2 methods

– Implements these new methods to ensure
consistency

• How effective is this solution?

14

Example solution: mediators

• Each set allows insertion and
deletion of elements

• Each set also announces an
“inserted” event and a
“removed” event when the
associated operation is
performed

• A separate component, a
mediator M, registers interest in
the events from both sets

• Ex: If an element is inserted
into S1, then M receives an
“inserted” event; it then can
invoke the insert method on S2

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

15

Mediator issues

• Must avoid circularity

• Events are first-class elements in interfaces
– “interface” and “out-erface”

• Makes many changes easier
– lazy equivalence

– allow size of the sets to be changed directly

– …

16

Mediator: with lazy update

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

• Only maintain
equivalence of sets
when a bit is set

• When the bit is
moved from off to
on, re-establish
consistency

17

Mediators: lazy and count

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

C

Register

Count

Call

• Track an
integer with the
count of the set
elements

• With or
without the lazy
modification

18

Assessment

• For some classes of systems and changes,
mediator-based designs seem attractive

• Lots of outstanding issues
– Circularities in relations

– Ordering of mediators

– Distributed and concurrent variants

– Reasoning (even informally) about systems built with
implicit invocation
• Even “just” debugging


