CSES03: Software Engineering

David Notkin
University of Washington
Department of Computer Science & Engineering
Winter 2002

Software evolution

*» Software changes
— Software maintenance
— Software evolution
— Incremental development
+ The objective is to use an existing code base as an
asset

— Cheaper and better to get there from here, rather than
starting from scratch

— Anyway, where would you aim for with a new system?

A legacy

* Merriam-Webster on-line dictionary
— “a gift by will especially of money or other personal
property”
— “something transmitted by or received from an ancestor
or predecessor or from the past”
* The usual joke is that in anything but software,
you’d love to receive a legacy

— Maybe we feel the same way about inheritance, too,
especially multiple inheritance

Change

“There is in the worst of fortune the best of
chances for a happy change” —Euripides

He who cannot dance will say, “The drum is bad”
—Ashanti proverb

“The ruling power within, when it is in its natural
state, is so related to outer circumstances that it
easily changes to accord with what can be done
and what is given it to do” —Marcus Aurelius

“Change in all things is sweet” —Aristotle

Why does it change?

 Software changes does not change primarily because it
doesn’t work right
— Maintenance in software is different than maintenance for
automobiles
* But rather because the technological, economic, and
societal environment in which it is embedded changes

+ This provides a feedback loop to the software
— The software is usually the most malleable link in the chain, hence
it tends to change

 Counterexample: Space shuttle astronauts have thousands of extra
responsibilities because it’s safer than changing code

Kinds of change

Corrective maintenance

—Fixing bugs in released code :z
« Adaptive maintenance 50
— Porting to new hardware or 40
software platform 30 e
« Perfective maintenance 2 B Adaptive
—Providing new functions lz | O Perfective

Lientz & Swanson

0ld data, focused on IT 1980

systems...now?




High cost, long time

*Gold’s 1973 study %
showed the fraction of
programming effort
spent in maintenance I |

*For example, 22% of
the organizations spent

30% of their effort in 5 I
maintenance

1020 30 40 50 60 70 80 90 100

Total life cycle cost

» Lientz and Swanson determined that at least
50% of the total life cycle cost is in
maintenance

* There are several other studies that are
reasonably consistent

» General belief is that maintenance accounts
for somewhere between 50-75% of total life
cycle costs

Open question

¢ How much maintenance cost is “reasonable?”

— Corrective maintenance costs are ostensibly not
“reasonable”

— How much adaptive maintenance cost is “reasonable”?
— How much perfective maintenance cost is
“reasonable”?
* Measuring “reasonable” costs in terms of
percentage of life cycle costs doesn’t make sense

High-level answer

+ For perfective maintenance, the objective should
be for the cost of the change in the implementation
to be proportional to the cost of the change in the
specification (design)

— Ex: Allowing dates for the year 2000 is (at most) a
small specification change

— Ex: Adding call forwarding is a more complicated
specification change

— Ex: Converting a compiler into an ATM machine is ...

Question: relationship of reuse to
evolution?

(Common) Observations

» Maintainers often get less respect than developers

* Maintenance is generally assigned to the least
experienced programmers

* Software structure degrades over time

» Documentation is often poor and is often
inconsistent with the code

* Is there any relationship between these?




Laws of Program Evolution
Program Evolution: Processes of Software Change
(Lehman & Belady)

Law of continuing change ¢ P-type programs

“A large program that is — Well-defined, precisely

L specified
used undergoes continuing _ The challenge is efficient
change or becomes implementation
progressively less useful.” — Ex: sort

— Analogies to biological « E-type programs
evolution have been made; — Ill-defined, fit into an ever-
the rate of change in changing environment
software is generally far — The challenge is managing
faster change

« Also, S-type programs

— Ex: chess

Law of increasing complexity

“As a large program is continuously changed, its
complexity, which reflects deteriorating structure,
increases unless work is done to maintain or
reduce it.”

— Complexity, in part, is relative to a programmer’s

knowledge of a system
* Novices vs. experts doing maintenance
— Cleaning up structure is done relatively infrequently

« Even with the recent interest in refactoring, this seems true.
Why?

Reprise

The claim is that if you measure any reasonable
metric of the system

— Modules modified, modules created, modules handled,
subsystems modified, ...

and then plot those against time (or releases)

Then you get highly similar curves regardless of
the actual software system

A zillion graphs on http://www.doc.ic.ac.uk/~mml/feast1/

Statistically regular growth

“Measures of [growth] are cyclically self-
regulating with statistically determinable trends
and invariances.”

— (You can run but you can’t hide)

* There’s a feedback loop
— Based on data from OS/360 and some other systems
— Ex: Content in releases decreases, or time between
releases increases

Is this related to Brooks’ observation that adding people to
a late project makes it later?

And two others

“The global activity rate in a large
programming project is invariant.”

“For reliable, planned evolution, a large
program undergoing change must be made
available for regular user execution at
maximum intervals determined by its net
growth.”

— This is related to “daily builds”

Open question

Are these “laws” of Belady and Lehman actually
inviolable laws?

Could they be overcome with tools, education, discipline,
etc.?

Could their constants be fundamentally improved to give
significant improvements in productivity?

— Within the past two years, Alan Greenspan and others have
claimed that IT has fundamentally changed the productivity of the
economy: “The synergistic effect of new technology is an
important factor underlying improvements in productivity.”




Approaches to reducing cost

* Design for change (proactive)

— Information hiding, layering, open
implementation, aspect-oriented programming,
etc.

* Tools to support change (reactive)

— grep, etc.

— Reverse engineering, program

Approaches to reducing cost

Improved documentation (proactive)
— Discipline, stylized approaches

— Parnas is pushing this very hard, using a tabular form of
specifications

— Literate programming

Reducing bugs (proactive)

— Many techniques, some covered later in the quarter
Increasing correctness of specifications (proactive)
Others?

Program understand &
comprehension

* Definition: The task of building mental models
of the underlying software at various
abstraction levels, ranging from models of the
code itself to ones of the underlying application
domain, for maintenance, evolution, and re-
engineering purposes [H. Miiller]

21

Various strategies

Top-down

— Try to map from the application domain to the code
Bottom-up

— Try to map from the code to the application domain
Opportunistic: mix of top-down and bottom-up

I’m not a fan of these distinctions, since it has to
be opportunistic in practice
— Perhaps with a really rare exception

22

Did you try to understand?

+ “The ultimate goal of research in program understanding is
to improve the process of comprehending programs,
whether by improving documentation, designing better
programming languages, or building automated support
tools.” —Clayton, Rugaber, Wills

* To me, this definition (and many, many similar ones) miss
a key point: What is the programmer’s task?

* Furthermore, most good programmers seem to be good at
knowing what they need to know and what they don’t need
to know

23

A scenario

I’1l walk through a simple scenario or two
The goal isn’t to show you “how” to evolve
software

Rather, the goal is to try to increase some of

the ways in which you think during
software evolution




A view of maintenance

Assigned
Task

aH

‘When assigned a task to modify an
existing software system, how does a
software engineer choose to
proceed?

25

Sample (simple) task

You are asked to update an application in response
to a change in a library function
The original library function is

- assign(char* to, char* from, int cnt = NCNT)
— Copy cnt characters from to into £rom
The new library function is

- assign(char* to, char* from, int pos,
int cnt = NCNT)

— Copy cnt characters starting at pos from to into from
How would you make this change? (In groups)




