
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Software evolution

• Software changes
– Software maintenance

– Software evolution

– Incremental development

• The objective is to use an existing code base as an
asset
– Cheaper and better to get there from here, rather than

starting from scratch

– Anyway, where would you aim for with a new system?

3

A legacy

• Merriam-Webster on-line dictionary
– “a gift by will especially of money or other personal

property”

– “something transmitted by or received from an ancestor
or predecessor or from the past”

• The usual joke is that in anything but software,
you’d love to receive a legacy

– Maybe we feel the same way about inheritance, too,
especially multiple inheritance

4

Change

• “There is in the worst of fortune the best of
chances for a happy change” —Euripides

• He who cannot dance will say, “The drum is bad”
—Ashanti proverb

• “The ruling power within, when it is in its natural
state, is so related to outer circumstances that it
easily changes to accord with what can be done
and what is given it to do” —Marcus Aurelius

• “Change in all things is sweet” —Aristotle

5

Why does it change?

• Software changes does not change primarily because it
doesn’t work right
– Maintenance in software is different than maintenance for

automobiles

• But rather because the technological, economic, and
societal environment in which it is embedded changes

• This provides a feedback loop to the software
– The software is usually the most malleable link in the chain, hence

it tends to change
• Counterexample: Space shuttle astronauts have thousands of extra

responsibilities because it’s safer than changing code

6

Kinds of change

• Corrective maintenance
– Fixing bugs in released code

• Adaptive maintenance
– Porting to new hardware or
software platform

• Perfective maintenance
– Providing new functions

• Old data, focused on IT
systems…now?

0

10

20

30

40

50

60

70

Lientz& Swanson
1980

Corrective

Adaptive

Perfective



2

7

High cost, long time

•Gold’s 1973 study
showed the fraction of
programming effort
spent in maintenance

•For example, 22% of
the organizations spent
30% of their effort in
maintenance

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

8

Total life cycle cost

• Lientz and Swanson determined that at least
50% of the total life cycle cost is in
maintenance

• There are several other studies that are
reasonably consistent

• General belief is that maintenance accounts
for somewhere between 50-75% of total life
cycle costs

9

Open question

• How much maintenance cost is “reasonable?”
– Corrective maintenance costs are ostensibly not

“reasonable”

– How much adaptive maintenance cost is “reasonable”?

– How much perfective maintenance cost is
“reasonable”?

• Measuring “reasonable” costs in terms of
percentage of life cycle costs doesn’t make sense

10

High-level answer

• For perfective maintenance, the objective should
be for the cost of the change in the implementation
to be proportional to the cost of the change in the
specification (design)
– Ex: Allowing dates for the year 2000 is (at most) a

small specification change

– Ex: Adding call forwarding is a more complicated
specification change

– Ex: Converting a compiler into an ATM machine is …

11

Question: relationship of reuse to
evolution?

12

(Common) Observations

• Maintainers often get less respect than developers

• Maintenance is generally assigned to the least
experienced programmers

• Software structure degrades over time

• Documentation is often poor and is often
inconsistent with the code

• Is there any relationship between these?



3

13

Laws of Program Evolution
Program Evolution: Processes of Software Change

(Lehman & Belady)

• Law of continuing change

• “A large program that is
used undergoes continuing
change or becomes
progressively less useful.”
– Analogies to biological

evolution have been made;
the rate of change in
software is generally far
faster

• P-type programs
– Well-defined, precisely

specified
– The challenge is efficient

implementation
– Ex: sort

• E-type programs
– Ill-defined, fit into an ever-

changing environment
– The challenge is managing

change

• Also, S-type programs
– Ex: chess

14

Law of increasing complexity

• “As a large program is continuously changed, its
complexity, which reflects deteriorating structure,
increases unless work is done to maintain or
reduce it.”
– Complexity, in part, is relative to a programmer’s

knowledge of a system
• Novices vs. experts doing maintenance

– Cleaning up structure is done relatively infrequently
• Even with the recent interest in refactoring, this seems true.

Why?

15

Reprise

• The claim is that if you measure any reasonable
metric of the system
– Modules modified, modules created, modules handled,

subsystems modified, …

• and then plot those against time (or releases)

• Then you get highly similar curves regardless of
the actual software system

• A zillion graphs on http://www.doc.ic.ac.uk/~mml/feast1/

16

Statistically regular growth

• “Measures of [growth] are cyclically self-
regulating with statistically determinable trends
and invariances.”
– (You can run but you can’t hide)

• There’s a feedback loop

– Based on data from OS/360 and some other systems
– Ex: Content in releases decreases, or time between

releases increases
• Is this related to Brooks’ observation that adding people to

a late project makes it later?

17

And two others

• “The global activity rate in a large
programming project is invariant.”

• “For reliable, planned evolution, a large
program undergoing change must be made
available for regular user execution at
maximum intervals determined by its net
growth.”
– This is related to “daily builds”

18

Open question

• Are these “laws” of Belady and Lehman actually
inviolable laws?

• Could they be overcome with tools, education, discipline,
etc.?

• Could their constants be fundamentally improved to give
significant improvements in productivity?
– Within the past two years, Alan Greenspan and others have

claimed that IT has fundamentally changed the productivity of the
economy: “The synergistic effect of new technology is an
important factor underlying improvements in productivity.”



4

19

Approaches to reducing cost

• Design for change (proactive)
– Information hiding, layering, open
implementation, aspect-oriented programming,
etc.

• Tools to support change (reactive)
– grep, etc.

– Reverse engineering, program

20

Approaches to reducing cost

• Improved documentation (proactive)
– Discipline, stylized approaches
– Parnas is pushing this very hard, using a tabular form of

specifications
– Literate programming

• Reducing bugs (proactive)
– Many techniques, some covered later in the quarter

• Increasing correctness of specifications (proactive)
• Others?

21

Program understand &
comprehension

• Definition: The task of building mental models
of the underlying software at various
abstraction levels, ranging from models of the
code itself to ones of the underlying application
domain, for maintenance, evolution, and re-
engineering purposes [H. Müller]

22

Various strategies

• Top-down
– Try to map from the application domain to the code

• Bottom-up
– Try to map from the code to the application domain

• Opportunistic: mix of top-down and bottom-up

• I’m not a fan of these distinctions, since it has to
be opportunistic in practice
– Perhaps with a really rare exception

23

Did you try to understand?

• “The ultimate goal of research in program understanding is
to improve the process of comprehending programs,
whether by improving documentation, designing better
programming languages, or building automated support
tools.” —Clayton, Rugaber, Wills

• To me, this definition (and many, many similar ones) miss
a key point: What is the programmer’s task?

• Furthermore, most good programmers seem to be good at
knowing what they need to know and what they don’t need
to know

24

A scenario

• I’ll walk through a simple scenario or two

• The goal isn’t to show you “how” to evolve
software

• Rather, the goal is to try to increase some of
the ways in which you think during
software evolution



5

25

When assigned a task to modify
an existing software system,
how does a software engineer
choose to proceed?

A view of maintenance

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned
Task

? ? ? ? ?

When assigned a task to modify an

existing software system, how does a

software engineer choose to

proceed?

26

Sample (simple) task

• You are asked to update an application in response
to a change in a library function

• The original library function is
– assign(char* to, char* from, int cnt = NCNT)

– Copy cnt characters from to into from

• The new library function is
– assign(char* to, char* from, int pos,

int cnt = NCNT)

– Copy cnt characters starting at pos from to into from

• How would you make this change? (In groups)


