
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Recap: example

• What information did you need?

• What information was available?

• What tools produced the information?
– Did you think about other pertinent tools?

• How accurate was the information?
– Any false information? Any missing true information?

• How did you view and use the information?

• Can you imagine other useful tools?

3

Source models

•Reasoning about a maintenance task is often
done in terms of a model of the source code
–Smaller than the source, more focused than the
source

•Such a source model captures one or more
relations found in the system’s artifacts
–We’ve talked about many possible relations:
calls, uses, registers-in, names, #includes, etc.

4

Extracting source models

• Source models are extracted using tools
• Any source model can be extracted in
multiple ways
– That is, more than one tool can produce a given
kind of source model

• The tools are sometimes off-the-shelf,
sometimes hand-crafted, sometimes
customized

5

Information characteristics

ideal conservative

optimistic approximate

no false positives false positives

no
fa

ls
e

ne
ga

tiv
es

fa
ls

e
ne

ga
tiv

es

6

Ideal source models

• It would be best if every source model extracted was
perfect
– All entries are true and no true entries are omitted

• For some source models, this is possible
– Inheritance, defined functions, #include structure, etc.

• For some source models, achieving the ideal may be
difficult in practice
– Ex: computational time is prohibitive in practice

• For many other interesting source models, this is not
possible
– Ideal call graphs, for example, are uncomputable



2

7

Conservative source models

• These include all true information and
maybe some false information, too

• Frequently used in compiler optimization,
parallelization, in programming language
type inference, etc.
– Ex: never misidentify a call that can be made or
else a compiler may translate improperly

– Ex: never misidentify an expression in a
statically typed programming language

8

Optimistic source models

• These include only truth but may omit some
true information

• Often come from dynamic extraction

• Ex: In white-box code coverage in testing
– Indicating which statements have been
executed by the selected test cases

– Others statements may be executable with other
test cases

9

Approximate source models
• May include some false information and may omit

some true information
• These source models can be useful for

maintenance tasks
– Especially useful when a human engineer is using the

source model, since humans deal well with
approximation

– It’s “just like the web!”

• Turns out many tools produce approximate source
models

10

Static vs. dynamic

• Source model extractors can work
– statically, directly on the system’s artifacts, or
– dynamically, on the execution of the system, or
– a combination of both

• Ex:
– A call graph can be extracted statically by
analyzing the system’s source code or can be
extracted dynamically by profiling the system’s
execution

11

Must iterate

•Usually, the engineer must iterate to get a
source model that is “good enough” for the
assigned task

•Often done by inspecting extracted source
models and refining extraction tools

•May add and combine source models, too

12

Another maintenance task

• Given a software system, rename a given
variable throughout the system
– Ex: angle should become diffraction
– Probably in preparation for a larger task

• Semantics must be preserved
• This is a task that is done infrequently

– Without it, the software structure degrades
more and more



3

13

What source model?

• Our preferred source model for the task
would be a list of lines (probably organized
by file) that reference the variable angle

• A static extraction tool makes the most
sense
– Dynamic references aren’t especially pertinent
for this task

14

Start by searching

• Let’s start with grep, the most likely tool for
extracting the desired source model

• The most obvious thing to do is to search
for the old identifier in all of the system’s
files
– grep angle *

15

What files to search?

• It’s hard to determine which files to search
– Multiple and recursive directory structures
– Many types of files

• Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs (such as
yacc)? Makefiles?

– Conditional compilation? Other problems?

• Care must be taken to avoid false negatives
arising from files that are missing

16

False positives

• grep angle [system’s files]

• There are likely to be a number of spurious
matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers
presented by Angle & Brooks (IROS ‘90) */

– printf(“Now play the Star Spangled Banner”);

• Be careful about using agrep!

17

More false negatives

• Some languages allow identifiers to be split
across line boundaries
– Cobol, Fortran, PL/I, etc.

– This leads to potential false negatives

• Preprocessing can hurt, too
– #define deflection angle
...
deflection = sin(theta);

18

It’s not just syntax

• It is also important to check, before
applying the change, that the new variable
name (degree) is not in conflict anywhere
in the program
– The problems in searching apply here, too

– Nested scopes introduce additional
complications



4

19

Tools vs. task
• In this case, grep is a lexical tool but the

renaming task is a semantic one
– Mismatch with syntactic tools, too

• Mismatches are common and not at all
unreasonable
– But it does introduce added obligations on the

maintenance engineer

– Must be especially careful in extracting and then using
the approximate source model

20

Finding vs. updating

• Even after you have extracted a source
model that identifies all of (or most of) the
lines that need to be changed, you have to
change them

• Global replacement of strings is at best
dangerous

• Manually walking through each site is time-
consuming, tedious, and error-prone

21

Downstream consequences

• After extracting a good source model by
iterating, the engineer can apply the
renaming to the identified lines of code

• However, since the source model is
approximate, regression testing (and/or
other testing regimens) should be applied

22

Griswold’s approach

• Griswold developed an approach to
meaning-preserving restructuring

• Make a local change
– The tool finds global, compensating changes
that ensure that the meaning of the program is
preserved
• What does it mean for two programs to have the
same meaning?

– If it cannot find these, it aborts the local change

23

Simple example

•Swap order of formal
parameters

• It’s not a local change nor a
syntactic change

• It requires semantic knowledge
about the programming language

• Griswold uses a variant of the
sequence-congruence theorem
[Yang] for equivalence

– Based on PDGs (program
dependence graphs)

• It’s an O(1) tool
– The user touches only one place

24

Limited power

• The actual tool and approach has limited power
• Can help translate one of Parnas’ KWIC decompositions to

the other
• Too limited to be useful in practice

– PDGs are limiting
• Big and expensive to manipulate
• Difficult to handle in the face of multiple files, etc.

• May encourage systematic restructuring in some cases
• Some related work specifically in OO by Opdyke and

Johnson
• Question: How do you find appropriate restructuring?



5

25

Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t going to
work on a large scale

• But sometimes significant restructuring is still
desirable

• Instead provide a tool (star diagrams) to
– record restructuring plans

– hide unnecessary details

• Some modest studies on programs of 20-70KLOC

26

A star diagram

27

Interpreting a star diagram

• The root (far left) represents all the instances of the
variable to be encapsulated

• The children of a node represent the operations and
declarations directly referencing that variable

• Stacked nodes indicate that two or more pieces of code
correspond to (perhaps) the same computation

• The children in the last level (parallelograms) represent the
functions that contain these computations

28

After some changes

29

Evaluation

• Compared small teams of programmers on small
programs
– Used a variety of techniques, including videotape

– Compared to vi/grep/etc.

• Nothing conclusive, but some interesting
observations including
– The teams with the star diagram tools adopted simpler

strategies for handling completeness and consistency

30

My view

• Star diagrams may not be “the” answer
• But I like the idea that they encourage
people
– To think clearly about a maintenance task,
reducing the chances of an ad hoc approach

– They help track mundane aspects of the task,
freeing the programmer to work on more
complex issues

– To focus on the source code


