CSES03: Software Engineering

David Notkin
University of Washington
Department of Computer Science & Engineering
Winter 2002

Recap: example

What information did you need?
What information was available?
What tools produced the information?

— Did you think about other pertinent tools?

How accurate was the information?

— Any false information? Any missing true information?
How did you view and use the information?

Can you imagine other useful tools?

Source models

*Reasoning about a maintenance task is often
done in terms of a model of the source code
—Smaller than the source, more focused than the
source
*Such a source model captures one or more
relations found in the system’s artifacts

—We’ve talked about many possible relations:
calls, uses, registers-in, names, #includes, etc.

Extracting source models

Source models are extracted using tools

Any source model can be extracted in

multiple ways

— That is, more than one tool can produce a given
kind of source model

The tools are sometimes off-the-shelf,

sometimes hand-crafted, sometimes

customized

Information characteristics

no false positives false positives
L3 ideal conservative
e
S e
@
[0} g
22 A .
28 optimistic approximate
28
<

.

.

Ideal source models

It would be best if every source model extracted was
perfect

— All entries are true and no true entries are omitted
For some source models, this is possible

— Inheritance, defined functions, #include structure, etc.
For some source models, achieving the ideal may be
difficult in practice

— Ex: computational time is prohibitive in practice
For many other interesting source models, this is not
possible

— Ideal call graphs, for example, are uncomputable

Conservative source models

* These include all true information and
maybe some false information, too
Frequently used in compiler optimization,
parallelization, in programming language
type inference, etc.

— Ex: never misidentify a call that can be made or
else a compiler may translate improperly

— Ex: never misidentify an expression in a
statically typed programming language

Optimistic source models

* These include only truth but may omit some
true information

+ Often come from dynamic extraction
* Ex: In white-box code coverage in testing

— Indicating which statements have been
executed by the selected test cases

— Others statements may be executable with other
test cases

Approximate source models

* May include some false information and may omit
some true information
* These source models can be useful for
maintenance tasks
— Especially useful when a human engineer is using the

source model, since humans deal well with
approximation

— It’s “just like the web!”

» Turns out many tools produce approximate source
models

Static vs. dynamic

 Source model extractors can work
— statically, directly on the system’s artifacts, or
— dynamically, on the execution of the system, or
— a combination of both
* Ex:
— A call graph can be extracted statically by
analyzing the system’s source code or can be

extracted dynamically by profiling the system’s
execution

Must iterate

*Usually, the engineer must iterate to get a
source model that is “good enough” for the
assigned task

*Often done by inspecting extracted source
models and refining extraction tools

*May add and combine source models, too

Another maintenance task

* Given a software system, rename a given
variable throughout the system
— Ex: angle should become diffraction
— Probably in preparation for a larger task

» Semantics must be preserved

* This is a task that is done infrequently

— Without it, the software structure degrades
more and more

What source model?

¢ Our preferred source model for the task
would be a list of lines (probably organized
by file) that reference the variable angle

A static extraction tool makes the most
sense

— Dynamic references aren’t especially pertinent
for this task

Start by searching

* Let’s start with grep, the most likely tool for
extracting the desired source model
» The most obvious thing to do is to search

for the old identifier in all of the system’s
files

-grep angle *

What files to search?

* It’s hard to determine which files to search
— Multiple and recursive directory structures
— Many types of files

* Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs (such as
yacc)? Makefiles?

— Conditional compilation? Other problems?

« Care must be taken to avoid false negatives
arising from files that are missing

False positives

e grep angle [system’s files]

* There are likely to be a number of spurious
matches
- ..triangle.., ..quadrangle..
- /* I could strangle this programmer! */
- /* Supports the small planetary rovers
presented by Angle & Brooks (IROS ‘90) */
- printf (“Now play the Star Spangled Banner”);

* Be careful about using agrep!

More false negatives

» Some languages allow identifiers to be split
across line boundaries

— Cobol, Fortran, PL/I, etc.
— This leads to potential false negatives
* Preprocessing can hurt, too

— #define deflection angle

deflection = sin(theta);

It’s not just syntax

* It is also important to check, before
applying the change, that the new variable
name (degree) is not in conflict anywhere
in the program
— The problems in searching apply here, too

— Nested scopes introduce additional
complications

Tools vs. task

« In this case, grep is a lexical tool but the
renaming task is a semantic one
— Mismatch with syntactic tools, too
* Mismatches are common and not at all
unreasonable
— But it does introduce added obligations on the
maintenance engineer
— Must be especially careful in extracting and then using
the approximate source model

Finding vs. updating

» Even after you have extracted a source
model that identifies all of (or most of) the
lines that need to be changed, you have to
change them

* Global replacement of strings is at best
dangerous

* Manually walking through each site is time-
consuming, tedious, and error-prone

Downstream consequences

» After extracting a good source model by
iterating, the engineer can apply the
renaming to the identified lines of code

* However, since the source model is
approximate, regression testing (and/or
other testing regimens) should be applied

21

Griswold’s approach

* Griswold developed an approach to
meaning-preserving restructuring
* Make a local change
— The tool finds global, compensating changes
that ensure that the meaning of the program is
preserved

* What does it mean for two programs to have the
same meaning?

— If it cannot find these, it aborts the local change

22

Simple example

. Swap order of formal o 1It’s nota local change nor a
syntactic change
parameters « It requires semantic knowledge

about the programming language
* Griswold uses a variant of the

! procedure push(s, v!

| insert (v, s.head)

rerurn s sequence-congruence theorem
| end [Yang] for equivalence
{] — Based on PDGs (program
i dependence graphs)

« It’s an O(1) tool

pushimyStack,1)
— The user touches only one place

|
|
|_push(myStack, himyStack})

23

Limited power

« The actual tool and approach has limited power
« Can help translate one of Parnas” KWIC decompositions to
the other
« Too limited to be useful in practice
— PDGs are limiting
* Big and expensive to manipulate
« Difficult to handle in the face of multiple files, etc.

* May encourage systematic restructuring in some cases

« Some related work specifically in OO by Opdyke and
Johnson

¢ Question: How do you find appropriate restructuring?

Star diagrams [Griswold et al.]

* Meaning-preserving restructuring isn’t going to
work on a large scale

* But sometimes significant restructuring is still
desirable

* Instead provide a tool (star diagrams) to
— record restructuring plans
— hide unnecessary details

» Some modest studies on programs of 20-70KLOC

25

A star diagram

&

Interpreting a star diagram

* The root (far left) represents all the instances of the
variable to be encapsulated

* The children of a node represent the operations and
declarations directly referencing that variable

+ Stacked nodes indicate that two or more pieces of code
correspond to (perhaps) the same computation

* The children in the last level (parallelograms) represent the
functions that contain these computations

27

After some changes

e e T)) ey o) pa

sl
JES

Sy || e - T |

\ Coagmme e e
\ [nsetoson]
Noons }{ sellrenes] K

"[reverse |/ "n e csine

<>

28

Evaluation

» Compared small teams of programmers on small
programs
— Used a variety of techniques, including videotape
— Compared to vi/grep/etc.
* Nothing conclusive, but some interesting
observations including

— The teams with the star diagram tools adopted simpler
strategies for handling completeness and consistency

29

My view

« Star diagrams may not be “the” answer
 But I like the idea that they encourage
people
— To think clearly about a maintenance task,
reducing the chances of an ad hoc approach

— They help track mundane aspects of the task,
freeing the programmer to work on more
complex issues

— To focus on the source code

30

