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Recap: example

• What information did you need?

• What information was available?

• What tools produced the information?
– Did you think about other pertinent tools?

• How accurate was the information?
– Any false information? Any missing true information?

• How did you view and use the information?

• Can you imagine other useful tools?
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Source models

•Reasoning about a maintenance task is often
done in terms of a model of the source code
–Smaller than the source, more focused than the
source

•Such a source model captures one or more
relations found in the system’s artifacts
–We’ve talked about many possible relations:
calls, uses, registers-in, names, #includes, etc.
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Extracting source models

• Source models are extracted using tools
• Any source model can be extracted in
multiple ways
– That is, more than one tool can produce a given
kind of source model

• The tools are sometimes off-the-shelf,
sometimes hand-crafted, sometimes
customized
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Information characteristics
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Ideal source models

• It would be best if every source model extracted was
perfect
– All entries are true and no true entries are omitted

• For some source models, this is possible
– Inheritance, defined functions, #include structure, etc.

• For some source models, achieving the ideal may be
difficult in practice
– Ex: computational time is prohibitive in practice

• For many other interesting source models, this is not
possible
– Ideal call graphs, for example, are uncomputable
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Conservative source models

• These include all true information and
maybe some false information, too

• Frequently used in compiler optimization,
parallelization, in programming language
type inference, etc.
– Ex: never misidentify a call that can be made or
else a compiler may translate improperly

– Ex: never misidentify an expression in a
statically typed programming language
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Optimistic source models

• These include only truth but may omit some
true information

• Often come from dynamic extraction

• Ex: In white-box code coverage in testing
– Indicating which statements have been
executed by the selected test cases

– Others statements may be executable with other
test cases
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Approximate source models
• May include some false information and may omit

some true information
• These source models can be useful for

maintenance tasks
– Especially useful when a human engineer is using the

source model, since humans deal well with
approximation

– It’s “just like the web!”

• Turns out many tools produce approximate source
models
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Static vs. dynamic

• Source model extractors can work
– statically, directly on the system’s artifacts, or
– dynamically, on the execution of the system, or
– a combination of both

• Ex:
– A call graph can be extracted statically by
analyzing the system’s source code or can be
extracted dynamically by profiling the system’s
execution
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Must iterate

•Usually, the engineer must iterate to get a
source model that is “good enough” for the
assigned task

•Often done by inspecting extracted source
models and refining extraction tools

•May add and combine source models, too
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Another maintenance task

• Given a software system, rename a given
variable throughout the system
– Ex: angle should become diffraction
– Probably in preparation for a larger task

• Semantics must be preserved
• This is a task that is done infrequently

– Without it, the software structure degrades
more and more
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What source model?

• Our preferred source model for the task
would be a list of lines (probably organized
by file) that reference the variable angle

• A static extraction tool makes the most
sense
– Dynamic references aren’t especially pertinent
for this task
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Start by searching

• Let’s start with grep, the most likely tool for
extracting the desired source model

• The most obvious thing to do is to search
for the old identifier in all of the system’s
files
– grep angle *

15

What files to search?

• It’s hard to determine which files to search
– Multiple and recursive directory structures
– Many types of files

• Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs (such as
yacc)? Makefiles?

– Conditional compilation? Other problems?

• Care must be taken to avoid false negatives
arising from files that are missing
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False positives

• grep angle [system’s files]

• There are likely to be a number of spurious
matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers
presented by Angle & Brooks (IROS ‘90) */

– printf(“Now play the Star Spangled Banner”);

• Be careful about using agrep!
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More false negatives

• Some languages allow identifiers to be split
across line boundaries
– Cobol, Fortran, PL/I, etc.

– This leads to potential false negatives

• Preprocessing can hurt, too
– #define deflection angle
...
deflection = sin(theta);
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It’s not just syntax

• It is also important to check, before
applying the change, that the new variable
name (degree) is not in conflict anywhere
in the program
– The problems in searching apply here, too

– Nested scopes introduce additional
complications
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Tools vs. task
• In this case, grep is a lexical tool but the

renaming task is a semantic one
– Mismatch with syntactic tools, too

• Mismatches are common and not at all
unreasonable
– But it does introduce added obligations on the

maintenance engineer

– Must be especially careful in extracting and then using
the approximate source model
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Finding vs. updating

• Even after you have extracted a source
model that identifies all of (or most of) the
lines that need to be changed, you have to
change them

• Global replacement of strings is at best
dangerous

• Manually walking through each site is time-
consuming, tedious, and error-prone
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Downstream consequences

• After extracting a good source model by
iterating, the engineer can apply the
renaming to the identified lines of code

• However, since the source model is
approximate, regression testing (and/or
other testing regimens) should be applied
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Griswold’s approach

• Griswold developed an approach to
meaning-preserving restructuring

• Make a local change
– The tool finds global, compensating changes
that ensure that the meaning of the program is
preserved
• What does it mean for two programs to have the
same meaning?

– If it cannot find these, it aborts the local change
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Simple example

•Swap order of formal
parameters

• It’s not a local change nor a
syntactic change

• It requires semantic knowledge
about the programming language

• Griswold uses a variant of the
sequence-congruence theorem
[Yang] for equivalence

– Based on PDGs (program
dependence graphs)

• It’s an O(1) tool
– The user touches only one place
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Limited power

• The actual tool and approach has limited power
• Can help translate one of Parnas’ KWIC decompositions to

the other
• Too limited to be useful in practice

– PDGs are limiting
• Big and expensive to manipulate
• Difficult to handle in the face of multiple files, etc.

• May encourage systematic restructuring in some cases
• Some related work specifically in OO by Opdyke and

Johnson
• Question: How do you find appropriate restructuring?
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Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t going to
work on a large scale

• But sometimes significant restructuring is still
desirable

• Instead provide a tool (star diagrams) to
– record restructuring plans

– hide unnecessary details

• Some modest studies on programs of 20-70KLOC

26

A star diagram
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Interpreting a star diagram

• The root (far left) represents all the instances of the
variable to be encapsulated

• The children of a node represent the operations and
declarations directly referencing that variable

• Stacked nodes indicate that two or more pieces of code
correspond to (perhaps) the same computation

• The children in the last level (parallelograms) represent the
functions that contain these computations

28

After some changes
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Evaluation

• Compared small teams of programmers on small
programs
– Used a variety of techniques, including videotape

– Compared to vi/grep/etc.

• Nothing conclusive, but some interesting
observations including
– The teams with the star diagram tools adopted simpler

strategies for handling completeness and consistency
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My view

• Star diagrams may not be “the” answer
• But I like the idea that they encourage
people
– To think clearly about a maintenance task,
reducing the chances of an ad hoc approach

– They help track mundane aspects of the task,
freeing the programmer to work on more
complex issues

– To focus on the source code


