
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Success of a system

• A system is judged not by properties of the
program, but by the effects of the machine in the
world

• You don’t care how Caller ID works, just that it
works

• TCAS is a collision-avoidance system for
commercial aircraft
– Pilots love it (on the whole) because it helps them fly

more safely and easily — not because it has great data
structures or a fascinating specification

3

Requirements & specification

• More software systems fail because they
don’t meet the needs of their users than
because they aren’t implemented properly

• Boehm:
– Verification: Did we build the system right?

– Validation: Did we build the right system?

– Validation: Did we build the right system?

4

Three challenges

• To figure out the desired effects
(requirements) of the machine in the world

• To figure out how to write this down in an
effective way

• To figure out how to make sure that the
machine (program) you build satisfies the
requirements

5

Challenge #1

• Determining the “right” requirements
– Requirements analysis, requirements discovery,
requirements elicitation, requirements
engineering, etc.

• This is extremely hard and we won’t address
it this quarter
– Any experience among you in doing this?

6

Challenge #2: Writing it down

• Even if you know what you want to say, how do
you write it down?

• Why does this matter?
– It will help clarify what you think
– It is necessary to communicate with your customers
– It is necessary to communicate with your team

members
– It could form the basis for a contractual relationship

• Not unrelated to Challenge #1, since the process is
really iterative



2

7

How to write it down?

• Choice #1: natural language

• Choice #2: structured natural language

• Choice #3: formal language(s)

8

Natural language

• Inherently ambiguous
– If you don’t believe it, make sure to teach or TA an

undergraduate course sometime!

• Also complex
– (You’ll have your own favorites along these lines; this

is from one of Jackson’s books)

– In an airport at the foot of an escalator are two signs

• “Shoes must be worn.”

• “Dogs must be carried.”

9

In logic it’s clear

• forall x • (OnEscalator(x) =>
there-exists y • (PairOfShoes(y) and IsWearing(x,y))

• forall x • ((OnEscalator(x) and IsDog(x)) => IsCarried(x)

10

Or is it?

• Do dogs have to wear shoes?
– Is this a question of the types of x and y?

• What are “shoes”? What are “dogs”? What does it mean to
“wear shoes”?

• Why do the formalizations say “dogs are carried” and
“shoes are worn” while the signs say “must be”?

• As Jackson said in the video (with a different example)
– The formalizations are in the indicative mood: statements of fact

– The signs are in the optative mood: statements of desire

– This kind of “mood mixing” increases confusion

11

“dog” (noun)

• OED has 15 definitions
– 11K words in the full definition

• Webster’s 11 definitions include
– a highly variable domestic mammal (Canis familiaris) closely

related to the common wolf

– a worthless person

– any of various usu. simple mechanical devices for holding,
gripping, or fastening that consist of a spike, rod, or bar

– FEET

– an investment ... not worth its price

– an unattractive girl or woman

12

“shoe” (noun, Webster’s):
six definitions including

• an outer covering for the human foot usu. made of leather
with a thick or stiff sole and an attached heel

• another's place, function, or viewpoint

• a device that retards, stops, or controls the motion of an
object

• a device (as a clip or track) on a camera that permits
attachment of accessory items

• a dealing box designed to hold several decks of playing
cards



3

13

Optative vs. indicative mood: reprise

• Indicative: describes how things in the
world are regardless of the behavior of the
system
– “Each seat is located in one and only one
theater.”

• Optative: describes what you want the
system to achieve
– “Better seats should be allocated before worse
seats at the same price.”

14

Principle of uniform mood

• Indicative and optative properties should be
entirely separated in a document
– Reduces confusion of both the authors and the
readers

– Increases chances of finding problems

• If the software works right, both sets of
properties will hold as facts

15

Mood mixing: example

• The lift never goes from the nth to the n+2nd floor without passing the
n+1st floor.

• The lift never passes a floor for which the floor selection light inside
the life is illuminated without stooped at that floor.

• If the motor polarity is set to up and the motor switch setting is
changed from off to on, the lift starts to rise within 250 msecs.

• If the upwards arrow indicator at a floor is not illuminated when the lift
stops at the floor, it will not leave in the upwards direction.

• The doors are never open at a floor unless the lift is stationary at that
floor.

• When the lift arrives at a floor, the lift-present sensor at the floor is set
to on.

• If an up call button at a floor is pressed when the corresponding light is
off, the light comes on and remains on until the call is serviced by the
lift stopping at that floor and leaving in the upwards direction. 16

A students’ view

17

Another high-level issue

• Specification languages
that are “closer” to the user
decrease the change of
building the wrong system
– But increase the chance of

building the system wrong

• And specification
languages that are “closer”
to the program do the
opposite
– Increasing the chance of

building the wrong system Program

Specification

18

Informal approaches

• Running plain text requirements
specifications are increasingly less common

• Uniform mood, designations/descriptions,
etc. don’t argue for a particular style of
presentation, but rather for properties that
requirements specifications should have



4

19

“Will” and “Shall”

• Some government groups write requirements with
specified meanings for “will” and “shall” and
“may” and such
– “shall” is a requirement

– “may” is an optional requirement

– “will” describes something not under control of the
system

• Almost always unclear
– Related to mood mixing

20

Structured natural language

• I
– I.A

• I.A.ii
– I.A.ii.3

» I.A.ii.3.q

• Although not ideal, it is frequently better
than unstructured natural language
– Unless the structure is used as an excuse to
avoid content

21

Formal languages

• Write down your requirements in some form of
mathematics
– The precision is greater, thus less ambiguity

– Tools for reasoning about the properties of the system
are then feasible

– Support automatic generation of all or part of the
system

• Great ideas — but they seem to be hard to use in
practical situations

22

Non-functional requirements

• We’re simply going to ignore non-functional requirements
– Performance, ease of change, etc.

• I’m not proud of this, but there is relatively little known
about this issue

• Worthwhile concrete discussion: should an interface’s
specification (documentation) specify the performance of
the operations?
– Pro: Sure, it’s a key property (and people will find it out anyway)

– Con: No way, since I’m supposed to be able to change an
implementation as long as it behaves the same

23

Next Lectures:
three specification approaches

• Model-based specification: Z

• Algebraic specification

• State-machine specification


