
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Abstract data types

• Abstract data types (ADTs) are a common
foundation for software development
– They grew out of Parnas’ notion of information hiding,

which we’ll cover during our design lectures
– Very roughly, an encapsulated type or a class: a set of

procedures (methods) that are the only way to access
and manipulate encapsulated data

• ADTs are commonly specified by
– Natural language comments associated with
– Signatures of the procedures; for example,
– void copyIntBuf(int *pin,int *pout,int len)

3

Algebraic specifications

• Algebraic specifications provide a
mathematical framework for specifying
ADTs

• The intent is to provide clear and well-
defined semantics for the operations
(procedures), rather than depending on
natural language associated with precisely
defined syntax

4

Algebras: roughly

• A set of objects

• A set of rules, called axioms, for determining the
equality among those objects

• “K-12” algebra
– Set of objects is the real numbers

– x*(y+z) = x*y + x*z

– x+y=y+x

– …

5

Algebraic specification for ADT

1. The name of the sort (roughly, the type)
being specified

2. The signatures of the primitive operations
3. The axioms

• There are a number of languages that
support algebraic specification, including
Anna, Clear, Larch, OBJ, …

6

Sort

• A sort is a set of values
– roughly a "type" or "class"
– Ex: integers, stacks of integers, strings, complex

numbers, …

• The sort of interest is the one that is being defined
by a particular specification

• To define this specification may require other
sorts (we’ll see an example)

• This approach induces a hierarchy of sorts



2

7

Signatures

• The name of the operator
• The types of its parameters
• The return type

• Like programming language signatures, but
usually represented more abstractly
– push: Stack x Elem -> Stack

– +: Integer x Integer -> Integer
– Round: Real -> Integer

• May look semi-familiar to those who studied ML
in 505 8

Axioms

• Rules that must hold true in any legal
implementation of the sort

9

Example: queue

• Signature
– create: -> Queue

– add: Queue x Element -> Queue
– remove: Queue -> Queue

– front: Queue -> Element

• Axioms
– front(add(create(),x)) = x

– front(add(add(q,x),y)) = front(add(q,x))

– remove(add(create(),x)) = create()
– remove(add(add(q,x),y)) =

add(remove(add(q,x)),y)

10

Conditional axioms

front(add(q,i)) =
if (IsEmpty(q))then i
else front(q);

• In some cases (not necessarily this one) one
can increase the clarity with conditional
axioms

11

Operations

• Usually separated into
– Constructors (that create an instance of the sort)

– Accessors (that take an instance of the sort as a
parameter and return an element from a
supporting sort)

– Modifiers (that take an instance of the sort as a
parameter and return a modified instance of it)

12

Issues

• Equality: two elements in a sort are equal if and
only if all operations applied to them produce
equal results
– Closely related to the rewriting in the lambda-calculus
– Inequality is defined as the inability to prove equality

• Consistency?
– Roughly, can we show that the axioms cannot be used

to prove “false”?

• Completeness?
– Roughly, does it represent all the values (e.g., queues)

that we intended?



3

13

Another example: signatures

algebra StringSpec;
sorts String, Char, Nat, Bool;
operations

new: () -> String
append: String, String -> String
add: String, Char -> String
length: String -> Nat
isEmpty: String -> Bool
equal: String, String -> Bool

14

StringSpec generated by [new, add]

for all [s1, s2, s3: String; c: Char]

isEmpty (new()) = true;

isEmpty (add(s1,c)) = false;

length (new()) = 0;

length (add(s1,c)) = length (s1) + 1

append (s1, new()) = s1

append (s1, add(s2,c)) = add
(append(s1,s2), c)

equal (new(), new()) = true

equal (new(), add(s1,c)) = false

equal (add(s1,c), new()) = false

equal (add(s1,c), add(s2,c)) = equal(s1,s2)

15

Pros of algebraic specifications

• Language independent
• Implementation independent
• Nicely matched to ADTs
• Strong mathematical foundation
• Suited to automation of the underlying
theorem proving

• Can “electrify” the specifications by tracing
rewriting

16

Cons of algebraic specifications

• Difficult to deal with procedures that have
side effects, reference parameters, multiple
returns, etc.

• Not all interesting behaviors are expressed
via equality

• The limits of notation can lead to messy and
complicated specifications


