CSES03: Software Engineering

David Notkin
University of Washington
Department of Computer Science & Engineering
Winter 2002

Abstract data types

+ Abstract data types (ADTs) are a common
foundation for software development
— They grew out of Parnas’ notion of information hiding,
which we’ll cover during our design lectures
— Very roughly, an encapsulated type or a class: a set of
procedures (methods) that are the only way to access
and manipulate encapsulated data
* ADTs are commonly specified by
— Natural language comments associated with

— Signatures of the procedures; for example,
- void copyIntBuf (int *pin,int *pout,int len)

Algebraic specifications

* Algebraic specifications provide a
mathematical framework for specifying
ADTs

* The intent is to provide clear and well-
defined semantics for the operations
(procedures), rather than depending on
natural language associated with precisely
defined syntax

Algebras: roughly

* A set of objects
A set of rules, called axioms, for determining the
equality among those objects
+ “K-12” algebra
— Set of objects is the real numbers
— x*(ytz) = x*y + x*z
— Xty=y+x

Algebraic specification for ADT

1. The name of the sort (roughly, the type)
being specified

2. The signatures of the primitive operations

3. The axioms

* There are a number of languages that
support algebraic specification, including
Anna, Clear, Larch, OBJ, ...

Sort

* A sort is a set of values
— roughly a "type" or "class"
— Ex: integers, stacks of integers, strings, complex
numbers, ...

 The sort of interest is the one that is being defined
by a particular specification

* To define this specification may require other
sorts (we’ll see an example)

* This approach induces a hierarchy of sorts

Signatures

* The name of the operator
» The types of its parameters
* The return type

+ Like programming language signatures, but
usually represented more abstractly
- push: Stack x Elem -> Stack
- +: Integer x Integer -> Integer
- Round: Real -> Integer

* May look semi-familiar to those who studied ML
in 505

Axioms

* Rules that must hold true in any legal
implementation of the sort

Example: queue

+ Signature
- create: -> Queue
- add: Queue x Element -> Queue
- remove: Queue -> Queue
- front: Queue -> Element

* Axioms
- front (add(create(),x)) = x
- front (add(add(q,x),y)) = front (add(qg,x))
- remove (add (create() ,x)) = create()
- remove (add (add(q,x) ,y)) =
add (remove (add (q,x)) ,y)

)
)

Conditional axioms

front (add(qg,1i)) =
if (IsEmpty(q))then i
else front(q);
* In some cases (not necessarily this one) one

can increase the clarity with conditional
axioms

Operations

 Usually separated into
— Constructors (that create an instance of the sort)
— Accessors (that take an instance of the sort as a
parameter and return an element from a
supporting sort)
— Modifiers (that take an instance of the sort as a
parameter and return a modified instance of it)

Issues

» Equality: two elements in a sort are equal if and
only if all operations applied to them produce
equal results

— Closely related to the rewriting in the lambda-calculus
— Inequality is defined as the inability to prove equality
 Consistency?
— Roughly, can we show that the axioms cannot be used
to prove “false”?

+ Completeness?

— Roughly, does it represent all the values (e.g., queues)
that we intended?

12

Another example: signatures

algebra StringSpec;

sorts String, Char, Nat, Bool;
operations
new: () -> String
append: String, String -> String
add: String, Char -> String
length: String -> Nat
isEmpty: String -> Bool
equal: String, String -> Bool

StringSpec generated by [new, add]
for all [sl, s2, s3: String; c: Char

isEmpty (new()) = true;

isEmpty (add(sl,c)) = false;
length
length

)
(new()) = 0;

()
append (
(

add(sl,c)) = length (s1) + 1
1, new()) = sl
1, add(s2,c)) = add

(append (sl,s2), c)

s
append (s
equal (new(), new()) = true
(new(), add(sl,c)) = false
equal (add(sl,c), new()) = false
(add(sl,c), add(s2,c)) = equal(sl,s2

equal

equal

Pros of algebraic specifications

Language independent

Implementation independent

Nicely matched to ADTs

Strong mathematical foundation

Suited to automation of the underlying
theorem proving

Can “electrify” the specifications by tracing
rewriting

Cons of algebraic specifications

+ Difficult to deal with procedures that have
side effects, reference parameters, multiple
returns, etc.

* Not all interesting behaviors are expressed
via equality

+ The limits of notation can lead to messy and
complicated specifications

