
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or
magic formula that will ensure a good, efficient, or
even feasible design. For that, the designer needs
experience, insight, flair, judgment, invention.
Formal methods can only stimulate, guide, and
discipline our human inspiration, clarify design
alternatives, assist in exploring their consequences,
formalize and communicate design decisions, and
help to ensure that they are correctly carried out.

3

Model-oriented specifications

• Model a system by describing its state
together with operations over that state
– An operation is a function that maps a value of
the state together with values of parameters to
the operation onto a new state value

• A model oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software

4

Z (“zed”)

• Probably the most widely known and used model-
based specification language

• Good for describing state-based abstract
descriptions roughly in the abstract data type style

• Based on typed set theory and predicate logic

• A few commercial successes
– I’ll come back to one reengineering story afterwards

5

The basic idea

• Static schemas
– States a system can occupy

– Invariants that must be maintained in every system state

• Dynamic schemas
– Operations that are permitted

– Relationship between inputs and outputs of those
operations

– Changes from state to state

6

Illustrative example (Zeil)

• I’ll sketch out a standard Z-style example

• Z relies heavily on non-standard characters
and formatting, which I will only
approximate
– The reading includes a similar example

– And uses the Z notation

2

7

Phone directory: static schema

• A static schema has three parts
– A name
– A set of declarations that define the state
– A set of invariants that constrain all legal states

• PhoneDB
–members: P Person
telephones: Person <-> Phone

– dom telephones SUBSET-OF members

8

Type of
members: P Person

• Atomic elements, like Person and Phone,
represent sets of values

• P Person represents the power set of
Person, the set of all sets taken from
Person

• So, members is one of those: a set of
Person

9

Type of
telephones: Person <-> Phone

• telephones is a relation between Person
and Phone

• That is, it is a set of pairs, where the first element
is taken from Person and the second is taken
from Phone

10

Invariant
dom telephones subset-of members

• This is an invariant that defines a constraint on all
legal states of PhoneDB

• The domain (the set of first elements in the pairs)
of telephones must only contain elements that
are in members

• Without this invariant, there would be no
restrictions nor relationship between members and
telephones

• When we define operations that can modify the
state of PhoneDB, they are obligated to maintain
(prove) that this invariant is maintained

11

Example: a legal PhoneDB state

• Person: { jerre, hellmut, bob, paul, jean-loup,
ed, david}

• Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,
3-1695,3-2969,3-6175,6-4368}

• members: { jerre, hellmut, jean-loup, ed,
david }

• telephones: { (jerre |->3-6175),
(hellmut |-> 3-6175),
(jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798) }

• |-> is a “maplet”, essentially a pair

12

A few notes on the example

• The elements of Person and Phone are atomic: they have
no required syntax nor semantics

• telephones is a relation, not a function; so adding the
tuple (david |-> 3-1695) to it is perfectly legal

• And it already contains two tuples with the same range
(second element of the pair): jerre and hellmut share 3-
6175

• Z, of course, has and uses functions (both partial and total)
– But they are notational conveniences, since one can write invariant

that constrain relations to be functions

3

13

Example: an illegal PhoneDB state

• Person: { jerre, hellmut, bob, paul, jean-loup,
ed, david, jonathan }

• Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,
3-1695,3-2969,3-6175,6-4368,1-2345}

• members: { jerre, hellmut, jean-loup, ed,
david }

• telephones: { (jerre |->3-6175),
(hellmut |-> 3-1675),
(jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798),
(jonathan |-> 1-2345) }

• This would be perfectly legal in the absence of the
invariant: but jonathan, while being an element of
Person, is not an element of members

14

Dynamic schema: specifying
state transitions

• Static schema specify legal states
• But we also need to specify operations that

transform one legal state into another legal state
• Dynamic schema have (just like static schemas)

– A name
– A set of declarations
– A set of invariants that relate the set of declarations to

one another

• However, the declarations used are richer

15

Example declaration

• Declaration: DELTA PhoneDB

• A DELTA declaration introduces pre- and post-states for
each of the declarations in the named schema
– members and members’
– telephones and telephones’

• The unprimed names represent the pre-states and the
primed names the post-state

• Any invariants must hold on the pre-state and then again
on the post-state
– dom telephones SUBSET-OF members

– dom telephones’ SUBSET-OF members’

16

Example dynamic schema

• Name: AddEntry
• Declarations:

– DELTA PhoneDB
name? : Person
newnumber?: Phone

• Invariants
– name? IS-ELEM members

(name? |-> newnumber?) NOT-ELEM telephones
telephones’ =

telephones UNION (name? |-> newnumber?)
members’ = members

• This may or may not be what you expect from AddEntry,
but it is clear about key issues: for instance, it only adds
new phone numbers for existing members

17

What if…

• telephones’ =
telephones UNION (name? |-> newnumber?)

was replaced with
• (name? |-> newnumber?)IS-ELEM telephones’

18

Returning information

• GetNumber

• XI PhoneDB
name?: Person
number!: P Phone

• name? IS-ELEM members
number! = { n : Phone

| ((name? |-> n) IS-ELEM telephones)}

• The XI declaration is the equivalent of DELTA along with the
following invariants that guarantee no change to the PhoneDB
declarations
– members = members’

– telephones = telephones’

4

19

Error conditions

• Note that the dynamic schema we’ve seen
so far just specify what happens in the
“good cases”
– Nothing is specified for the error conditions

– What happens with AddEntry(mork,0-1010)?

20

Specify in separate schema

• NotMember

• XI PhoneDB
name? : Person
report! : Report

• name? NOT-ELEM members
report! = ‘not a member’

21

But it’s still entirely separate

• Success
• report! : Report
• report! = ‘OK’

• And then the coolest thing in Z…(at least notationally) is
the schema calculus

• AddEntryWithError ==
(AddEntry AND Success) OR
NotMember

• This is the same as a dynamic schema in which the three
schema are commingled according to the stated logic
– They are “pinned” together by shared names

22

Z/CICS

• Z was used to help develop the next release of
IBM’s CICS/ESA_V3.1, a transaction processing
system
– Integrated into IBM's existing and well-established

development process
– Many measurements of the process indicated that they

were able to reduce their costs for the development by
almost five and a half million dollars

– Early results from customers also indicated
significantly fewer problems, and those that have been
detected are less severe than would be expected
otherwise

23

1992 Queen’s Award
for Technological Achievement

• “Her Majesty the Queen has been graciously pleased to approve the Prime
Minister's recommendation that The Queen's Award for Technological
Achievement should be conferred this year upon Oxford University
Computing Laboratory.

• “Oxford University Computing Laboratory gains the Award jointly with IBM
United Kingdom Laboratories Limited for the development of a programming
method based on elementary set theory and logic known as the Z notation, and
its application in the IBM Customer Information Control System (CICS)
product. ...

• “The use of Z reduced development costs significantly and improved
reliability and quality. Precision is achieved by basing the notation on
mathematics, abstraction through data refinement, re-use through modularity
and accuracy through the techniques of proof and derivation.

• “CICS is used worldwide by banks, insurance companies, finance houses and
airlines etc. who rely on the integrity of the system for their day-to-day
business.”

24

Pros and cons?

• Your turn…

