
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Finite-State Specifications

• There is a large class of specification languages
based on finite state machines

• Often primarily for describing the control aspects
of reactive systems

• The theoretical basis is very firm
– Lots of theory on finite-state machines, plus analysis

support from theorem proving and model checking
– As we’ll see during the lectures on tools and analysis,

modeling checking is increasing feasible for analyzing
this kind of specification

3

Walkman example
(due to Alistair Kilgour, Heriot-Watt University)

• What happens when…?

• The implementers need to know, the users need to know, …
4

Reactive systems

• Essentially event-driven systems that responds to both
external (from the environment) and internally-generated
stimuli, and also provides stimuli to the external
environment

• These are generally embedded systems in which we care
about the behavior of the overall system, not the software
per se

• As fewer and fewer complex systems are built without
software — one can legitimately view this as inappropriate
and, in some cases, perhaps even unethical — the
pressures on properly specifying (and analyzing) reactive
systems increases

5

Many, many models

• Standard finite state machines
– Set of states
– One initial state
– Zero or more termination states
– Finite alphabet
– Transition relation

• Petri nets
• Communicating finite state machines
• Statecharts
• RSML
• …

6

A common problem

• It is often the case that conventional finite state
machines blow-up in size for big problems

• This is especially true for deterministic machines
– And these are usually preferable to non-deterministic

ones, because they don’t allow implementers to make
decisions about the behavior of the specified system

• And for machines capturing concurrency (because
of the potential interleavings that must be
captured)



2

7

State explosion

• The state explosion problem is very similar to the potential
blow-up that arises when transforming a non-deterministic
finite-state machine to a deterministic one

• There is a potential exponential blowup: an N-state
machine can become an 2N-state machine

• As a high-level example think
– of a state machine that tracks the amount of money put into a

vending machine and
– of a state machine that tracks the buttons pushed on the vending

machine to indicate which product to purchase
– if money can be entered and buttons can be pushed in an

interleaved fashion, consider the fully expanded single state
machine that composes these two sub-machines

8

Statecharts (Harel)

• A visual formalism for defining finite state
machines

• A hierarchical mechanism allows for complex
machines to be defined by smaller descriptions
– Parallel states (AND decomposition)

– Conventional OR decomposition

• The reduced size of the description is a central
piece of the leverage of statecharts

9

Walkman
example:
statechart

10

Communicating state machines

• In conventional state machines, precisely one state
must be occupied at a given time

• In communicating state machines (including
statecharts), every machine in a composition must
occupy one state at a given time
– This allows (in part) the blow-up of representation to be

mitigated, because now a pair of communicating state
machines can represent NxM states in the overall
machine using N+M states

11

Hierarchical state machines

• Harel’s additional insight was to allow the
hierarchical definition of state machines
– It’s basically an and-or tree of state machines

– Machines separated by dotted lines are “and” machines,
where each of the machines occupies exactly one state
at a time; it’s easy to imagine taking the cross product
to create a flattened machine

– Everything else is an “or” machine, essentially like a
standard state machine (although they can in turn be
nested “and” machines)

12

Tons of details

• As you noted in the paper, there are many details
• What are the start states upon entering an “and”

machine?
– These notations usually have an arrow with nothing at

the tail pointing at the start states.

• What happens upon exits from a nested state?
– Nested states are allowed to cause exits from the

enclosing “and” machines (usually by showing a
transition to the edge of the enclosed box)

• And more, more, more!



3

13

An RSML example

• The following slide shows a very rough “statechart” from RSML
– RSML is a variant of statecharts developed specifically for the

specification of TCAS (Traffic Collision Avoidance System)
– I will call all descriptions in these similar languages “statecharts”

• Three high-level states: on, off, and panic
• The on state is expanded and has three parallel states: temperature, rod

movement, and rod configuration
• The only non-traditional statecharts feature in this description is the

temperature state, which uses a bus that connects all substates (too hot,
hot, okay, cold) to one another

• There are six events listed at the bottom (this is an incomplete list)
– Each event has a name, a description of how it is generated (externally or

by a specific sub-machine in the description), and a list of the sub-
machines that react to that event

Too Hot

Move OutJust Moved

Move InReady

Cold

Okay

Hot

All Out

All In

Midway

Temperature Rod ConfigurationRod Movement

On

Off Panic

Temp_Reading External Temperature
Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Events

15

Sample transitions
On Panic

Trigger_Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Ready Move In

Trigger_Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
Output Action: Initiate_Move

Just Moved Ready

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and

t > t(entered(Just_Moved))+ Move_Delay

• This slide shows three sample
transitions

• Conditions on the transitions are
common

• Output actions are also listed here

16

Events

• External—interactions with environment
• Synchrony hypothesis (from Esterel)

– External event arrives
– Triggers cascade of internal events (micro
steps)

– Stability reached before next external event

• RSML requires the synchrony hypothesis
• Statecharts gives a choice

17

Synchrony hypothesis

• Accept a single external event and then propagate
all internal events until the machine stabilizes, and
then accept another external event, etc.

• One model of this is to think of the machine as
executing infinitely fast

• The alternative is to allow external and internal
events to interleave

• The latter alternative appears to be used in
hardware specifications more frequently, and the
former in software specifications (so we will
consider the synchrony hypothesis as a rule) 18

Semantics

• What to do when there are multiple events available: which
of the enabled transitions should be taken?

• There are literally dozens of (published) choices, with
subtle distinctions

• Some of the more theoretically pleasing semantics seem,
unfortunately, to be less intuitive to people

• It is, however, critical to have a well-defined semantics;
after all, these are specification languages
– The most common semantics are the “Statemate semantics”, Harel

and Naamad, which define the formal semantics of statecharts in
terms of the operational semantics defined by the Statemate tool

• At the same time, for most “normal” examples, the
differences among the semantics are not significant



4

19

Reasoning

• The definition of precise semantics allows
reasoning of the meaning of statecharts

• Given an initial state
– And a set of possible external events
– What states can be reached?

• Again, not that different from program
correctness, model-based specifications, or
algebraic specifications: reason inductively

20

Differences

• But state-based specifications are fundamentally
different from model-based and algebraic-
specifications

• More importantly, a central focus on specifying
control (as opposed to state, or pseudo-state as in
algebraic specifications)

• The computations represented at specific nodes
(states) in statecharts are generally not part of the
basic specification and reasoning
– But they are, of course, important
– And they are addressed by some notations and tools


