
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Question

• So we have a big statecharts-like specification

• How do we know it has properties we want it to
have?
– Ex: is it deterministic?

– Ex: can you ever have the doors unlock by themselves
while the car is moving?

– Ex: can you ever cause an emergency descent when you
are under 500 feet above ground level?

3

Standard answers include

• Human inspection

• Simulation

• Analysis

• Aside: especially for safety-critical systems,
I cannot imagine using only a single
approach

4

An alternative: model checking

• Evaluate temporal properties of
finite state systems

– Guarantee a property is true or
return a counterexample

– Ex: Is it true that we can never
enter an error state?

– Ex: Are we able to handle a reset
from any state?

• Extremely successfully for
hardware verification

– Intel got into the game after the
FDIV error

• Open question: applicable to
software specifications?

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No

5

State Transition Graph

• One way to represent a finite state machine is as a
state transition graph
– S is a finite set of states
– R is a binary relation that defines the possible

transitions between states in S
– P is a function that assigns atomic propositions to each

state in S
• e.g., that a specific process holds a lock

• Other representations include regular expressions,
etc.

6

Example

• Three states
• Transitions as shown
• Atomic properties a, b
and c

• Given a start state (say,
S0), you can consider
legal paths through the
state machine

a
b

b
c

a
c

S0

S1

S2



2

7

A computation tree

• From a given start state,
you can represent all
possible paths with an
infinite computation tree

• Model checking allows us
to answer questions about
this tree structure

• Because the underlying
machine is finite-state, the
structure of the
computation tree is
constrained

S0

S0

S1

S2S1

S0

S2S1

8

Temporal formulae:
we can say things like

• Does some property hold true
globally (e.g., in every state)?

– Top figure

• Does some property inevitably
hold true (e.g., along every
path)?

– Bottom figure

• Does some property potentially
hold true?

S0

S0

S1

S2S1

S0

S2S1

S0

S0

S1

S2S1

S0

S2S1

S2

9

Mutual exclusion example

• N1 and N2, non-critical
regions of Process 1 and 2

• T1 and T2, trying regions

• C1 and C2, critical regions

• AF(C1) in lightly shaded
state?
– C1 always inevitably true?

• EF(C1 AND C2) in dark
shaded state?
– C1 and C2 eventually true?

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2

10

How does model checking work?
(in brief!)

• An iterative algorithm that labels states in the
transition graph with formulae known to be true

• For a query Q
– the first iteration marks all subformulae of Q of length

1

– the second iteration marks them of length 2

– this terminates since the formula is finite

• The details of the logic indeed matter
– But not at this level of description

11

Example

• Q == T1 implies AF C1
– If Process 1 is trying to acquire the mutex, then
it is inevitably true it will get it sometime

• Q == (not T) OR AF C1
– Rewriting with DeMorgan’s Laws

• First, label all the states where T1, not T1,
and C1 are true
– These are atomic properties

12

Example

• Next mark all the states in
which AF C1 is true, etc.
– The algorithm tracks states
visited using depth-first
search

– Slight variations for AF, AG,
EF, EG, etc.

• At termination,
(not T1) OR AF C1 is true
everywhere
–Hence the temporal property
is true for the state machine

N1/N2
¬T1

¬T1 v AF C1

N1/T2
¬T1

¬T1 v AF C1

T1/N2
AF C1

¬T1 v AF C1

C1/N2
¬T1
AF C1

¬T1 v AF C1

N1/C2
¬T1

¬T1 v AF C1

T1/C2
AF C1

¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1

C1/T2
¬T1
AF C1

¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1



3

13

Symbolic model checking

• State space can be huge (>21000) for many systems

• Key idea: use implicit representation of state space
– Data structure to represent transition relation as a

boolean formula

• Algorithmically manipulate the data structure to
explore the state space

• Key: efficiency of the data structure

14

Binary decision diagrams (BDDs)

• “Folded decision tree”

• Fixed variable order

• Many functions have small
BDDs
– Multiplication is a notable

exception

• Can represent
– State machines (transition

functions) and

– Temporal queries

01

1 1

1 10

10

1 1

0

0

x1

x4

x3

x2

Odd Parity

Due to Randy Bryant

15

BDD-based model checking

• Iterative, fixed-point algorithms that are quite
similar to those in explicit model checking

• Applying boolean functions to BDDs is efficient,
which makes the underlying algorithms efficient
– AND becomes set intersection, OR becomes set union,

etc.

• When the BDDs remain small, that is
– The ordering of the variables is a key issue

16

BDD-based successes in HW

• IEEE Futurebus+ cache coherence protocol

• Control protocol for Philips stereo
components

• ISDN User Part Protocol

• ...

17

Software model checking

• Finite state software specifications
– Reactive systems (avionics, automotive, etc.)

– Hierarchical state machine specifications

• Not intended to help with proving
consistency of specification and
implementation
– Rather, checking properties of the specification
itself

18

Why might it fail?

• Software is often specified with infinite
state descriptions

• Software specifications may be structured
differently from hardware specifications
– Hierarchy

– Representations and algorithms for model
checking may not scale



4

19

Our approach at UW—try it!

• Applied model checking to the specification of TCAS II
– Traffic Alert and Collision Avoidance System

• In use on U.S. commercial aircraft
• http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification
– Initial design and development by Leveson et al.

• Later applied it to a statecharts description of an electrical
power distribution system model of the B777

• The vast bulk of this work was due to William Chan
– Along with Mike Ernst won honorable mention in the 2000 ACM

Dissertation Award competition
– Died in a tragic automobile accident a week after defending his

dissertation
20

TCAS
• Warn pilots of traffic

– Plane to plane, not through ground controller

– On essentially all commercial aircraft

• Issue resolution advisories only
– Vertical resolution only

– Relies on transponder data

21

TCAS specification

• Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project

– FAA adopted RSML version as official

• Specification is about 400 pages long

• This study uses: Version 6.00, March 1993
– Not the current FAA version

22

TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

•Own_Aircraft
–Sensitivity levels, Alt_Layer, Advisory_Status

•Other_Aircraft
–Tracked, Intruder_State, Range_Test, Crossing, Sense
Descend/Climb

23

Using SMV

•SMV is a BDD-based model checker

•It checks CTL formulas
–A specific temporal logic

•We developed reasonably efficient
techniques for mapping RSML to SMV,
including the state hierarchies

24

Iterative process

• Iterate SMV version of specification

• Clarify and refine temporal formula

• Model environment more precisely

• Refine specification



5

25

Use of non-determinism:
needed to reduce size of the BDDs

• Inputs from environment
– Altitude := {1000…8000}

• Simplification of functions
– Alt_Rate :=

0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

• Unmodelled parts of specification
– States of Other_Aircraft treated as non-
deterministic input variables

26

Checking properties

• Initial attempts to check any property
generated BDDs of over 200MB

• First successful check took 13 hours
– Was reduced to a few minutes

• Techniques included
– Partitioned BDDs
– Reordered variables
– Implemented better search for counterexamples

27

Property checking

• Domain independent properties
– Deterministic state transitions

– Function consistency

• Domain dependent
– Output agreement

– Safety properties

• We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module

28

Disclaimer

•The intent of this work was to evaluate
symbolic model checking of state-based
specifications, not to evaluate the TCAS II
specification. Our study used a preliminary
version of the specification, version 6.00,
dated March, 1993. We did not have access
to later versions, so we do not know if the
issues identified here are present in later
versions.

29

Deterministic transitions

• Do the same conditions allow for non-
deterministic transitions?

• Inconsistencies were found earlier (in an earlier
version of TCAS) by other methods [Heimdahl and
Leveson]

– Identical conditions allowed transitions from Sensitivity
Level 4 to SL 2 or to SL 5

• Our formulae checked for all possible non-
determinism; we found this case, too

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
MS = 5 | MS = 6 | MS = 7;

V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
ASL = 6 | ASL = 7;

T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
(V_254b & LG = 2 & V524a);

V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |

MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257 := (ASL = 5 | V_257a | V_257b) |

(ASL = 5 & MS = TA_only) |
(ASL = 5& LG = 2 & V_257c) |
(V_257d & LG = 5 & V_257b) |
(V_257d & V_257a & MS = 5);



6

31

Function consistency

•Many functions are defined in terms of cases
–If C1 is true then F returns V1

–If C2 is true then F returns V2

–If C3 is true then F returns V3

•A function is inconsistent if two different
conditions Ci and Cj can be true simultaneously

•So, check the formula (for three cases)
–AG NOT

((C1 AND C2) OR (C1 AND C3) OR (C2 AND C3))

33

Display_Model_Goal

• Tells pilot desired rate of altitude change

• Checking for consistency gave a counterexample
– Other_Aircraft reverse from an Increase-
Climb to an Increase-Descend advisory

– After study, this is only permitted in our non-
deterministic modeling of Other_Aircraft

– Modeling a piece of Other_Aircraft’s logic
precludes this counterexample

34

Output agreement

• Related outputs should be consistent
– Resolution advisory

•Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal
• Desired rate of altitude change

• Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive

35

Output agreement check

• AG ((RA = Climb) implies (DMG > 0))
– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

• Counterexample was found
– t0 : RA = Descend, DMG = -1500

– t1 : RA = Increase-Descend, DMG = -2500

– t2 : RA = Climb, DMG = -1500

36

Limitations

• Can’t model all of TCAS
– Pushing limits of SMV (more than 200 bit
variables is problematic)

– Need some non-linear arithmetic to model parts
of Other_Aircraft
• New result that represents constraints as BDD
variables and uses a constraint solver

• How to pick appropriate formulae to check?



7

37

Whence formulae?

•“There have been two pilot reports
received which indicated that TCAS had
issued Descend RA's at approximately 500
feet AGL even though TCAS is designed
to inhibit Descent RAs at 1,000 feet AGL.
All available data from these encounters
are being reviewed to determine the reason
for these RAs.” –TCAS web

38

Whence formulae?

• Jaffe, Leveson et al. developed criteria that
specifications of embedded real-time systems
should satisfy, including:
– All information from sensors should be used
– Behavior before startup, after shutdown and during off-

line processing should be specified
– Every state must have a transition defined for every

possible input (including timeouts)
• Predicates on the transitions must yield deterministic behavior

• Essentially a check-list, but a very useful one

39

What about infinite state?

• Model checking does not apply to infinite state
specifications
– The iterative algorithm will not reach a fixpoint

• Theorem proving applies well to infinite state
specifications, but has generally proved to be
unsatisfactory in practice

• One approach is to abstract infinite state specifications into
finite state ones
– Doing this while preserving properties is hard

• D. Jackson et al.’s Nitpick approach
– Find counterexamples (errors), but don’t “prove” anything

40

Model checking wrap up

• The goal of model checking is to allow finite state
descriptions to be analyzed and shown to have particular
desirable properties
– Won’t help when you don’t want or need finite state descriptions
– Definitely added value when you do, but it’s not turnkey yet

• There’s still a real art in managing model checking

– Definitely feasible on modest sized systems

• This was fast: my goal wasn’t to make you into model
checking experts
– But it might titillate one or two of you to learn more

• But rather to understand the sketches of what model
checking is and why it is so promising for checking some
classes of specifications


