
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Analysis of model-based
specifications

• Given a model-based (Z-like) specification,
can we determine if it is inconsistent?

• In particular, can we do for Z-like
specifications what we did for model
checking: determine if something is not true
that we expect to be true

3

Why different?

• Z-like specifications are not suitable for direct
model checking

• The primary problem is that the data structures are
generally unbounded, taking the problem out of
the realm of model checking

• Even simple bounded data structures generally
cause massive state space explosions

• Abstraction into a model-checkable problem is
feasible, but not generally possible to automate

4

An alternative:
counterexample checking

• D. Jackson and C. Damon (Nitpick) suggested an
alternative: check a state space of a Z-like
specification up to a selected finite bound

• That is, determine if there is an inconsistency
within a certain bounded state space

• If a counterexample is reported, one has
determined a real error

• If not, one can not distinguish between a
consistent specification and one in which the
inconsistencies are beyond the chosen bound

5

Why OK?

• This technique is unsound: it may not report
counterexamples when they exist

• However
– The approach is very clear about reporting only

counterexamples in the selected bound
– If it does find counterexamples, they help identify

problem early
– The search space, while bounded, is still large
– There is an unproven hypothesis that most, or at least

many, problems arise in small state spaces (“small
scope hypothesis”)

6

Nitpick -> Alcoa

• Nitpick 1996
– Sets and binary relations, Z-like schema
calculus, sequential composition

• Alcoa 2000
– First-order quantifiers, hierarchical structures,
numbers, etc.

– Performance improvement of at least a factor of
two in both the number of relations and the size
of the finite bound

2

7

An example from Jackson

• Rough example of the BART system
– Investigate topology of railway

– Investigate placement of gates

8

Basic notions

• Segments: capability to use track in one direction
– A connector at end end

• seg1.from = con1
• seg3.from – seg4.from

• Overlap: model crossings of segments
– seg5 in seg6.overlaps means that seg5 and seg6

cross

• Gates: some segments have gates at the end, which
may be open or closed

• Train: occupy segments (ignore position)

9

Object model

• A graphical version of a Z-like description

Segment Connector

Gate

Open ClosedTrain

on

overlaps

from

to

gate

!

!

!

?

!

10

Alloy model: declarations

model Bart {
domain {Segment, Connector, Gate, Train}

state Segments {

from, to: Segment -> Connector!

overlaps: Segment -> Segment

gate: Segment! -> Gate?

partition Open, Closed: Gate

on: Train -> Segment!

succ: Segment -> Segment

conflicts: Segment -> Segment

}

11

An indicative invariant

inv Overlaps {

all s,t | s.from = t.to && s.to = t.from
-> s in t.overlaps

all s | s in s.overlaps

}

12

A safety condition

• Every segment has at most one train on it
and its overlapping segments
– Could check by theorem proving…or by
counterexample checking

cond Safety {
all s | sole(s + s.overlaps).~on

}

3

13

Two definitions

• Semantics of to and from relations

def succ {
all s | s.succ = {t|t.from=s.to}

}

• A segment conflicts with another segment if their
successors overlap

def conflicts {
all s | s.conflicts =

{t | some(s.succ & t.succ.overlaps)} – s
}

14

Policy invariants

• Place a gate wherever there is a conflict

inv GatePlacement {
all s | some s.conflicts -> some s.gate

}

• At most one open gate in a conflicting
group
inv Policy {

all s | sole (s.conflicts + s).gate & Open
}

15

An operation

• In any step, any number of trains can move;
no train goes through a closed gate

op TrainsMove(ts: Train) {
all t: ts | t.on’ in t.on.succ
no (ts.on.gate & Closed)
all t: Train – ts | t.on = t.on’

}

16

Analysis strategy

• Check consistency
– Ask for instances of states and transitions

• Check consequences
– Assert implications of invariants

– Assert properties of invariants (for instance,
preservation of invariants)

17

Bug example, implication

• Assert that conflicts is symmetric

assert ConflictsSym {
all s,t | s in t.conflicts
-> t in s.conflicts

}

• Alcoa reports a counterexample (with two
connectors and two segments)

• Fix by adding constraint on overlaps
all s,t | s in t.overlaps -> t in s.overlaps

18

Bug example, preservation of
invariants

• Assert that the safety condition is preserved

assert PolicyWorks {
all t | TrainsMove(t) && Safety-> Safety’

}

• Counterexample returned: a new train was
created during the operation…crunch!

• Fix by adding to operation

Trains = Trains’

4

19

Underlying technology

• Started using explicit model checking

• Tried symbolic model checking
– Better in some cases, but highly unpredictable

• Now, SAT solvers

20

Unsound, but useful

• And useful is a very nice property

