
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

What is software engineering?

• In groups of two or three people, take three
minutes to write down a definition

3

Key points for definitions

• Full-lifecycle: “womb-to-tomb”

• Multiple people are necessary
– Many people

– And people with different skill sets and job descriptions

• Multiple versions of software will be developed

• Economics plays a key role: resources are
constrained (cost, time-to-market, etc.)

4

Highest level goal of 503

• Develop a deep understanding of the fact
that software engineering is not a mere
matter of programming

5

What is software engineering
research?

• Finding ways to identify and better understand
problems that are faced in effectively engineering
software

• Finding ways to solve these problems

• Neither the problems nor the solutions are cut-
and-dried in software engineering research

• Both are much more contextual than in many other
areas of computer science research

6

People play a key role

• Many aspects of software engineering
focus on how to make the humans
involved in engineering software more
effective (as opposed to the computer
itself)

• People use the software systems (even if
indirectly) and this places pressures on the
software itself



2

7

Assessment is complicated

• The contextual and human-oriented nature
of software engineering makes it hard to
assess proposed improvements

• Some graduate students view this
characteristic of software engineering
research as sufficiently disturbing to cause
them to work in other areas

8

My view is different

• The problems of software engineering are real:
really, really real!

• The “softness” of the problems and the solutions
make it more interesting, challenging and exciting
– In understanding the problems, in determining potential

solutions, and in assessing their value

• This does cause the answer to many (perhaps most
or even all) questions to include the phrase, “Well,
it depends…”

9

CSE503: Technical focus

• Much work in software engineering touches on
managerial issues: this is essential, since
coordinating groups of people over time clearly
relates to management

• In this course, we’ll focus on technical aspects of
software engineering

• That said, it’s impossible to draw this line firmly
and clearly
– Near the end of the course, I may cover a few of the

more managerial aspects of software engineering

10

CSE503: Two primary objectives

• Provide an overview of some of the most important
techniques and approaches that can help in producing
better software at more predictable costs
– Understanding state-of-the-art, which may help you in your own

system building

• To lay a foundation for performing research in software
engineering
– Even though not all of you actually will!

– This means that we will often discuss the intention and
effectiveness of techniques and approaches, as well as the
techniques and approaches themselves

11

What is your background?

• What’s the largest software system you
have ever worked on?

• Original developer or maintainer?

• Any products with significant user bases?

• What were the most difficult software
engineering problems you faced?

12

What do you want from CSE503?

• Other than “it’s a quals course”



3

13

“Not a mere matter of programming”:
an example

• Proving programs correct
has a 30+ year history
– Given a specification (in a

formal logic) and
– an implementation (in a

programming language),
– prove that the

implementation satisfies the
specification

• This has often been
considered to be the key
problem in software
engineering

{ true }
x: int;

read(x);

if (mod(x,2) = 1) then

x := x + 1;

fi

{ even(x) }

14

But it leaves open key software
engineering problems

• Requirements engineering
– Where did the specification come from? Does it satisfy the needs

of the customer?

• Design
– How does it interact with other parts of the program?

• Evolution
– What happens if the specification is changed?

• Economics
– What is the cost of proving correctness?

• Testing
– Should we rely entirely on the proof?

• …

15

Proving programs correct: redux

• None of these issues eliminate the value of
proving programs correct, but they show some of
the limitations with respect to engineering large
software systems

• Barry Boehm
– Verification: “Did you build the system right?”

– Validation: “Did you build the right system?”

16

CSE503: basics

• Reading
– I’ll make papers available in advance
– give a quick quiz of some sort in class on the contents of the

readings

• Discussions on the cse503 email list
– Sign up using majordomo
– Address both topics in the course and other software engineering

topics that interest you
– You drive!

• Lectures
– Specifications, design and architecture, analysis and tools, testing

and quality assurance, etc.
– Tentative schedule on the web

17

CSE503: assigned work

• Two homework assignments [40% total]
– May be done in pairs

• (1 and 2) or 3 [60% total]
– A 10-15 page term paper on one of the subjects found on the web

page (or by negotiation with me) [30%]
• Done alone

– A tool evaluation [30%]
• May be done in pairs

– An extensive project
• Requires my permission and agreement upon a topic
• Only recommended for those with significant background
• Done alone

18

No midterm or final exam

• I’ve never been able to write a good exam
on software engineering



4

19

Wednesday (1/9):
a Michael Jackson video

• I’m sure you’ll all be exhausted from the
beginning of the quarter, so I’ve decided to give
you a break and show you a video on Wednesday

• Indeed, a Michael Jackson video
– No, not that Michael Jackson!

• The intent of this video is to drive home a set of
ideas, in particular that software engineering is
more than a mere matter of programming

20

Friday (1/11) and Monday (1/14):
program correctness

• Basic material on proving programs correct
– Program specifications
– Semantics of programming language constructs
– Pre- and post-conditions
– Hoare triples and Dijkstra weakest preconditions
– Loop invariants
– Proving correctness of data structures

• Intent
– Valuable material on its own
– Basis for understanding software specification work
– “Not a mere matter of programming”

21

Then: software specifications

• Model-based specifications (e.g., Z)

• Algebraic specifications

• …


