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1 Viterbi algorithm, continued

Given a collection of states, a probability associated with each symbol for
each state, and probabilities from moving between states, the Viterbi algo-
rithm will calculate V;(k), or the probability that the most likely path ended
at state k after emitting the first 7 symbols. Typically, this calculation is
performed in logarithmic space, as the probabilities of following any given
path can rapidly grow extremely small.

2 The Forward Algorithm

Say we wish to find the probability that a string x was emitted. This
probability will be equal to ), P(z, ), or the probability of the string being
emitted for each possible state path 7. Summing over all possible choices of
path is difficult, but it involves a fair amount of redundant calculation, and
a more efficient dynamic programming algorithm, the Forward Algorithm,
exists to exploit this.

2.1 The Algorithm

Define fy(i) = P(z1,z9,...x;, m; = k), or the probability of emitting symbols
z1 through z; in that order, ending in state m;. Then define ¢;(z; + 1)
to be the probability of emitting symbol x + 1 from state [, and ax; to
be the probability of moving from state k£ to state [. Define fj(i + 1) =
el(wi +1) 3o fr(i)ag,-

We begin with f(s) = 1, where s is the starting state, and f(i) = 0 for
states ¢ # s. (This assumes a known start state, of course; if the start state
is unknown, the probabilities of the respective start states should be used
as appropriate.) Then for a string z = 1, 2, ..., Tn, we can calculate fx(n)
for each state k, and thus calculate the probability that £ was emitted.



2.2 Running time

Given () possible states, and L many symbols emitted, the algorithm will
take O(Q2L) time, since there will be @ values to sum for each of Q) stages
at each stage, of which there are L many such stages.

3 Backward Algorithm

Say we want to calculate P(m; = k|z), or the probability that our state after
1 symbols is k given the observation of z. Consider the diagram below, for
instance, which shows a series of states, each with an associated probability
of movement from one state to another after the emission of a symbol.
Assume all symbols are equally likely to be emitted. After the first symbol
is emitted, the most likely state will be state A. However, after the second
symbol is emitted, the most likely state will be state E, since states B and
C will both always move to E after a symbol is emitted, and it is more likely
that either state B or C' will be reached.
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To apply Bayes’ rule, we calculate

P(.T, T = k) = P(.Z'l, ey Ljy Ty = k)P(aciH, ..:L‘L|:L'1, ey Ljy Ty = k)
The multiplicand can be calculated by the Forward Algorithm.
P(z,m; = k) = fr(i)P(ziy1, ..k, m = k)

The multiplier will be calculated using the Backward Algorithm.

3.1 The Algoritihm
Let bk(’L) = >y ak,lel(le)be(i + 1), and let bk(L) = ay, for all k. Then
bx (i + 1) will give use the desired result above.

3.2 Running time

Like the Forward Algorithm, the Backward Algorithm operates in polyno-
mial time, specifically in O(Q?L) time when given Q stages and L symbols.



4 Probability of Being Within a Set of States

We may wish to calculate the probability of being within a set of states at
the ith symbol when z is emitted - for instance, if we are attempting to find
whether we fall within a CpG island. Then we calculate Y, g(k)P(m; = k|z),
where each k is a state in the set and g(k) is the probability of being in state
k.

5 Parameter Estimation

So far, we have assumed knowledge of the parameters involved so far - the
probability of moving from one state to another, or of emitting a particular
symbol, for instance. We shall now consider the problem of estimating these
values giving training data, assuming a fixed architecture (i.e., the possible
transitions of state are known).

Say we are given n training sequences z!, z2,...2", each of some length.
If we have 1, ..., state transition sequences corresponding to the outputs,
the movement is straightforward - we simply calculate the number of times
we have moved from one state to another, so ap; = P(count of k¥ —
transitions)/(count of transitions from k total).

Normally, however, we don’t have the state transition sequences, so we
use algorithms to estimate them based on training data. One method of
doing so is Viterbi training, in which we estimate 7*, the most likely path
for a sequence, based on the training data.

6 The Baum-Welch Algorithm

The Baum-Welch Algorithm solves a special case of the problem solved
by EM algorithms. It attempts to calculate P(m; = k,m; + 1 = l|z,0),
where 0 represents estimates for the parameters. The algorithm calculates
w(z,m = k) = (fr(i)arei(ziy1)bi(i + 1))/P(z)). The expected count of
k — [ transitions would be 3 _;(1/P(z7)) times the numerator of the w
value calculated above summed over all 4, for all training sequences z7.



