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Clustering (contd.) EM Algorithm 
October 6, 2001 

Instructor: Larry Ruzzo 
Notes: Tushar Bhangale 

Probability Review 
 
Sample Space: The set of all possible outcomes is sample space (Ω) P(Ω) = 1. 
And probability of any event A:  )()( Ω≤ PAP
 
Conditional Probability: The probability of an event given that another event has occurred is called a 
conditional probability. The conditional probability of A given B is denoted by P(A|B) ans is computed as 
follows: 
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P(A|B) is also called as the posterior probability of A i.e. probability of A after observing that event B has 
occurred. In this case P(A) is also called as prior probability. 
 
Bayes’ Rule: 
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It is often easier to compute P(B|A) than P(A|B). Bayes’ rules makes it possible to evaluate P(A|B). 
Coin problem: Consider 2 biased coins, one (Hbiased)  has P(Head) = 0.99 and the other (Tbiased) has P(Tail) = 
0.99.  One of them is drawn randomly ( PHbiased = PTbiased = 0.5) and tossed. Thus the prior probability of PHbiased 
= 0.5.  What is the posterior probability of Hbiased given the fact that a Head occurred P(Hbiased|H) ? 
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Thus the posterior probability P(Hbiased|H)= 0.99 where the prior probability of P(Hbiased) was 0.5. 
 
Notations used: 
Zij {0,1} is a binary variable such that Zij=1 if Xi∈ Gaussian with µj and Zij= 0 otherwise. 
Event A = sample Xi is drawn from N(µ1, σ1),  P(A) = τ1 
Event B = sample Xi is drawn from N(µ2, σ2), P(B) = τ2 
Event D = Xi ∈ [X,  X + dx] 
 
Calculating E(Zij): 

P(D|A) can be calculated using: dxeADP
jix
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And P(A|D) can be calculated using P(D|A) and applying Bayes’ rule as: 
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where, P(D) = P(D|A)P(A) + P(D|B)P(B) if A and B are mutually exclusive and exhaustive. 
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D is the observed data and A is the model. P(A|D) is the posterior probability after seeing the data D that it 
came from model A. 
And E(Zij) = P(A|D). 
 Clustering can also be classified into hard clustering and soft clustering. Hard clustering is where every 
data point is assumed to belong to only one cluster. Soft clustering involves assigning a certain probability for 
the data point belonging to each cluster. 
If τjs are unknown but Zs are known, µs and τs can be calculated by using maximum likelihood estimation.  If 
Zs are unknown, bayesian estimation has to be used to calculate Zi. 
 
EM Algorithms 
EM stands for estimation-maximization. There are two types of EM algorithms. 
 
Classification Em Algorithms: (Hard clustering) 
Steps:  

1. Given µs and τs, estimate Zi 
2. Assign each xi to the best cluster 
3. Re-estimate µs and τs 
4. Reiterate 

(General) EM Algorithm: (soft clustering) 
Steps: 

1. Random initialization of µs and τs 
2. Using these values of µs and τs, estimate Zs 
3. Given distribution of Zs, re-estimate µs and τs 
4. Reiterate 

 
Consider that the data points belong to a mixture of two Gaussians with means µ1 and µ2 and variance σ2. 
Assuming equal likelihood of the data point belonging to each cluster i.e. τ1=τ2, for any data point, the posterior 
probability (given the µs) of it belonging to any cluster, is given by, 
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The joint probability for all the points is: 
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The goal is to maximize this probability, which is equivalent to maximizing the log of the function. 
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now, maximizing expected value of log P i.e. max E(log P), treating Zi as a random variable drawn from 
distributions defined by µ1

t, µ2
t 
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Finding µ1 and µ2 that maximize E(log P) is equivalent to finding µ1 and µ2 that minimize 

∑

∑

∑

∑

∑

∑

∑∑∑

∑∑

=

=

=

=

=

=

== =

= =

=

==

=−−=








−
∂
∂

−

n

i
ik

n

i
i

k

n

i
i

n

i
ii

n

i
i

n

i
ii

n

i
iij

n

i j
jiij

n

i j
jiij

ZE

xikZE
clusterskforsimilarly

ZE

xZE
and

ZE

xZE

xZExZE

xZE

1

1

1
2

1
2

2

1
1

1
1

1

1
1

1

2

1

2

1

1

2

1

2

)(

)(
,

)(

)(

)(

)(

0))((2))((

))((

µ

µµ

µµ
µ

µ

 

Same technique can be used to estimate unknown τs and σs if they are not the same for each cluster. 
 
EM Algorithm ( proof of convergence): 
 
Let  X be the visible data 
 Y the hidden data 
 θ, θt  the parameters where θt is the value of the parameters at time t 
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