Clustering (contd.) EM Algorithm

October 6, 2001 Instructor: Larry Ruzzo Notes: Tushar Bhangale

Probability Review

<u>Sample Space</u>: The set of all possible outcomes is *sample space* $(\Omega) P(\Omega) = 1$. And probability of any event A: $P(A) \le P(\Omega)$

<u>Conditional Probability</u>: The probability of an event given that another event has occurred is called a conditional probability. The conditional probability of *A* given *B* is denoted by P(A|B) and is computed as follows:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

P(A|B) is also called as the *posterior* probability of A i.e. probability of A after observing that event B has occurred. In this case P(A) is also called as *prior* probability.

Bayes' Rule:

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

It is often easier to compute P(B|A) than P(A|B). Bayes' rules makes it possible to evaluate P(A|B). <u>Coin problem</u>: Consider 2 biased coins, one (H_{biased}) has P(Head) = 0.99 and the other (T_{biased}) has P(Tail) = 0.99. One of them is drawn randomly ($P_{Hbiased} = P_{Tbiased} = 0.5$) and tossed. Thus the prior probability of $P_{Hbiased} = 0.5$. What is the posterior probability of H_{biased} given the fact that a Head occurred $P(H_{biased}|H)$?

$$P(H_{biased} \mid H) = \frac{P(H \mid H_{biased})P(H_{biased})}{P(H)} = \frac{P(H \mid H_{biased})P(H_{biased})}{P(H_{biased}) \times 0.99 + P(T_{biased}) \times 0.01} = \frac{0.99 \times 0.5}{0.5 \times 0.99 + 0.5 \times 0.01} = 0.99$$

Thus the posterior probability $P(H_{biased}|H) = 0.99$ where the prior probability of $P(H_{biased})$ was 0.5.

Notations used:

 $Z_{ij} \{0,1\}$ is a binary variable such that $Z_{ij}=1$ if $X_i \in Gaussian$ with μ_j and $Z_{ij}=0$ otherwise. Event A = sample X_i is drawn from N(μ_1, σ_1), P(A) = τ_1 Event B = sample X_i is drawn from N(μ_2, σ_2), P(B) = τ_2 Event D = $X_i \in [X, X + dx]$

Calculating E(Z_{ij}):

P(D|A) can be calculated using: $P(D \mid A) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu_j)^2}{2\sigma^2}} dx$

And P(A|D) can be calculated using P(D|A) and applying Bayes' rule as: $P(D \mid A)P(A)$

$$P(A \mid D) = \frac{I(D \mid A)I(A)}{P(D)}$$

where, P(D) = P(D|A)P(A) + P(D|B)P(B) if A and B are mutually exclusive and exhaustive.

$$P(D) = \sum_{j=1}^{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu_{j})^{2}}{2\sigma^{2}}} \tau_{j}$$
$$P(A \mid D) = \frac{\sum_{j=1}^{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu_{j})^{2}}{2\sigma^{2}}} \tau_{j}}{\sum_{j=1}^{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i}-\mu_{j})^{2}}{2\sigma^{2}}}}$$

D is the observed data and A is the model. P(A|D) is the posterior probability after seeing the data D that it came from model A.

And $E(Z_{ij}) = P(A|D)$.

Clustering can also be classified into hard clustering and soft clustering. Hard clustering is where every data point is assumed to belong to only one cluster. Soft clustering involves assigning a certain probability for the data point belonging to each cluster.

If $\tau_j s$ are unknown but Zs are known, μs and τs can be calculated by using maximum likelihood estimation. If Zs are unknown, bayesian estimation has to be used to calculate Z_i .

EM Algorithms

EM stands for estimation-maximization. There are two types of EM algorithms.

Classification Em Algorithms: (Hard clustering)

Steps:

- 1. Given μs and τs , estimate Z_i
- 2. Assign each x_i to the best cluster
- 3. Re-estimate μ s and τ s
- 4. Reiterate

(General) EM Algorithm: (soft clustering) Steps:

- 1. Random initialization of μs and τs
- 2. Using these values of μs and τs , estimate Zs
- 3. Given distribution of Zs, re-estimate μs and τs
- 4. Reiterate

Consider that the data points belong to a mixture of two Gaussians with means μ_1 and μ_2 and variance σ^2 . Assuming equal likelihood of the data point belonging to each cluster i.e. $\tau_1=\tau_2$, for any data point, the posterior probability (given the μ_s) of it belonging to any cluster, is given by,

$$P(X_i, Z_{i1}, Z_{i2} \mid \mu_1, \mu_2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\pi\sigma^2} \sum_{j=1}^2 Z_{ij}(x_i - \mu_j)^2}$$

The joint probability for all the points is:

$$P((X_1, Z_{11}, Z_{12}), (X_2, Z_{21}, Z_{22}) \dots | \mu_1, \mu_2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\pi\sigma^2} \sum_{j=1}^{2} Z_{ij}(x_i - \mu_j)^2}$$

The goal is to maximize this probability, which is equivalent to maximizing the log of the function.

$$\max \log(P((X_1, Z_{11}, Z_{12}), (X_2, Z_{21}, Z_{22}), \dots | \mu_1, \mu_2)) = \max \sum_{i=1}^n \left\{ \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^2 Z_{ij} (x_i - \mu_j)^2 \right\}$$

now, maximizing expected value of log P i.e. max E(log P), treating Z_i as a random variable drawn from distributions defined by μ_1^t , μ_2^t

$$\max E(\log(P((X_1, Z_{11}, Z_{12}), (X_2, Z_{21}, Z_{22}), \dots | \mu_1, \mu_2))) = \max \sum_{i=1}^n \left\{ \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^2 E(Z_{ij})(x_i - \mu_j)^2 \right\}$$

Finding μ_1 and μ_2 that maximize E(log P) is equivalent to finding μ_1 and μ_2 that minimize

$$\begin{split} &\sum_{i=1}^{n} \sum_{j=1}^{2} E(Z_{ij})(x_{i} - \mu_{j})^{2} \\ &\frac{\partial}{\partial \mu_{1}} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{2} E(Z_{ij})(x_{i} - \mu_{j})^{2} \right\} = -2 \sum_{i=1}^{n} E(Z_{ij})(x_{i} - \mu_{1}) = 0 \\ &\mu_{1} = \frac{\sum_{i=1}^{n} E(Z_{i1})x_{i}}{\sum_{i=1}^{n} E(Z_{i1})} \text{ and } \mu_{2} = \frac{\sum_{i=1}^{n} E(Z_{i2})x_{i}}{\sum_{i=1}^{n} E(Z_{i2})} \\ &\text{similarly for k clusters, } \mu_{k} = \frac{\sum_{i=1}^{n} E(Z_{ik})x_{i}}{\sum_{i=1}^{n} E(Z_{ik})} \end{split}$$

Same technique can be used to estimate unknown τs and σs if they are not the same for each cluster.

EM Algorithm (proof of convergence):

Let	Х	be the visible	data

Y the hidden data

 θ, θ^t the parameters where θ^t is the value of the parameters at time t

CSE 527 Lecture 10

$$\log P(X \mid \theta) - \log P(X \mid \theta^{t}) = Q(\theta \mid \theta^{t}) - Q(\theta^{t} \mid \theta^{t}) + \sum_{y} P(y \mid X, \theta^{t}) \log \frac{P(Y \mid X, \theta^{t})}{P(Y \mid X, \theta)}$$

 $H(P(Y \mid X, \theta) \parallel P(Y \mid X, \theta^{t})) \ge 0 \text{ is the relative entropy}$ $\theta^{t+1} = \theta \text{ that max imizes } Q(\theta \mid \theta^{t})$