Lecture 12

CSE 527: Computational Biology November 13, 2001 Notes: Scott Votaw

The Motif-Finding Problem

Given: *n* strings $x_1, x_2, ..., x_n$, each with length *m* each string has an instance of a motif of length $l \ll m$

Example:

x_{l}	\Rightarrow	А	С	Т	G	С	Т	А	T	A	A	T	С	T	G	Т	Т	А	G	С
x_2	\Rightarrow	Т	А	G	С	T	A	T	A	A	T	G	G	С	Т	Т	А	Т	G	А
<i>x</i> ₃	\Rightarrow	G	А	G	А	А	Т	А	Т	G	G	С	С	С	T	A	T	A	A	T
x_n	\Rightarrow	Т	T	A	С	A	\boldsymbol{A}	T	Т	G	Т	А	G	G	G	Т	Α	А	А	G

The simplest motif model would simply designate an exact sequence of characters to match (e.g. "TATAAT"). A measure of the match at any location k in the string would simply be the number of mismatches.

A slightly more advanced model of a motif of length l=6 (so-called "TATAAT" box) can be represented by a probability table. This is better than the previous model since the motif does not have to be an exact sequence. (This is a 0th order Markov model since all positions are independent)

	1	2	3	4	5	6
A	5	85	2	80	82	1
С	3	5	3	10	8	3
G	2	6	3	12	5	2
Т	90	4	92	8	5	94

Hypothetical probability model for a TATAAT box

In order to give an estimate of the likelihood of a model, there must be a comparison model. The "background" model can assume equal distribution, or represent the actual distribution of each character (e.g. 42% GC, 58% AT).

	1	2	3	4	5	6
Α	29	29	29	29	29	29
С	21	21	21	21	21	21
G	21	21	21	21	21	21
Т	29	29	29	29	29	29

Background model representing overall base pair frequencies

Each model (M_{test} and $M_{background}$) has a probability of generating *every* possible string. For the 0th order Markov models given above, the probability of a particular sequence occurring is simply the product of the probabilities for each character. This is true since the individual characters are independent in this type of model.

 $p_{\text{test}}(\text{TATAAT}) = .90 * .85 * .92 * .80 * .82 * .94$ $p_{\text{background}}(\text{TATAAT}) = .29 * .29 * .29 * .29 * .29 * .29$

The natural way to compare the two models is to generate a ratio of the probabilities. This ratio is called the natural score.

natural score =
$$\frac{p(\text{test model})}{p(\text{background model})}$$

Multiplying small numbers can be inaccurate computationally, so alternatively we can sum the logs.

$$\log \frac{\prod p_i}{\prod q_i} = \sum_{i=1}^l \log \frac{p_i}{q_i}$$

Defining $\theta = \log \frac{p_i}{q_i}$, finding a good motif is equivalent to finding a good θ . We wish to maximize the value of θ so that the relative probability of our test model is greatest with respect

Using E.M. to solve the Motif Finding Problem

Given: *n* strings $x_1, x_2, ..., x_n$, each with length *m*

Define: $y_{ik} = 1$ if motif starts at position k in string i = 0 otherwise

$$\theta = \log \frac{p_i}{q_i}$$

to the background model.

We need:

1) $p(x_i | \theta, y_{ik} = 1)$ 2) a way to find θ' maximizing above given some data

The E.M. (Expectation Maximization) algorithm

Given: θ^{t} (an initial estimate of θ)

E Step: estimates $E_{\theta^{t}}(y_{ik})$

(Calculate the expectation that the motif exists at location k in each string i)

$$E_{\theta^{t}}(y_{ik}) = E(y_{ik} = 1 | x_{i}, \theta^{t})$$

= 1 · $p(y_{ik} = 1 | x_{i}, \theta^{t}) + 0 · p(...)$
= $\frac{p(x_{i} | y_{ik} = 1, \theta^{t}) \cdot p(y_{ik} = 1 | \theta^{t})}{p(x_{i} | \theta^{t})}$
(by Bayes' rule)

Trick 1: The denominator is independent of $\underline{y_{ik}}$, so it cancels out in the ratio Trick 2: The $p(y_{ik} = 1 | \theta^t)$ is the prior belief, and can often be assumed a constant that can be factored out

M Step: maximize θ given data

$$Q(\theta \mid \theta^{t}) = E_{\theta^{t}} (\log (x, y \mid \theta))$$

= E (log $\prod_{i=1}^{n} p(x_{ij}, y_i \mid \theta)$)
(Trick: only one y_i is 1, the rest are zero)

$$= E \left(\log \prod_{i=1}^{n} \prod_{k=1}^{m} p(x_{ij} \mid \theta, y_{ik} = 1)\right)^{y_{ik}}$$

$$= E \left(\sum_{i=1}^{n} \sum_{k=1}^{m} y_{ik} \log(p(x_i \mid \theta, y_k = 1))\right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{m} E(y_{ik}) \log(p(x_i \mid \theta, y_k = 1))$$

(since $p(x_i \mid \theta, y_k = 1)$ is independent of expectation)

Goal: find θ maximizing Q function given data

How do you start the E.M. algorithm? (i.e. how to determine initial θ^{t})

Setting θ 's equal to the background is a bad idea since there will not be any progress on the first iteration.

Other possible starts:

- Start with random values and repeat many times
- Use prior knowledge
- MEME (Bailey and Elkan, San Diego Super Computer Center)
 - 1. Try all length l substrings of x_i 's
 - 2. Do 2 iterations of E.M. for each seed
 - 3. Pick best few and do full iteration

Model Selection

General problem: Given 2 models M_1 and M_2 , which is better?

Given: $M_1(\theta_1)$, $M_2(\theta_2)$, and observed data D

What's $p(M_1 | D)$?

by Bayes rule: $p(M_1 | D) = \frac{p(D | M_1) \cdot p(M_1)}{p(D | M_1)p(M_1) \cdot p(D | M_2)p(M_2)}$

What's $p(M_1)$ and $p(M_2)$?

These are the a priori probabilities of each model being correct.

- could assume equal probability of both models (i.e., 50/50)
- could calculate some other a priori probability using knowledge

e.g., data is a distribution of 8 points

$$\begin{split} M_1 &= 1 \text{ distribution with} \\ 1 \ \mu \text{ and } \sigma^2 \\ M_2 &= 2 \text{ populations with} \\ & \text{ different } \mu \text{ and } \sigma^2 \end{split}$$

We could use likelihood directly, but more complicated models fit better (e.g. $M_3 = 8$ populations with mean μ and $\sigma^2 = 0$). Intuition: penalize extra degrees of freedom. This can be done using a BIC score.

BIC score (Bayesian Information Criterion)

BIC = likelihood - penalty for degrees of freedom = $2 \log[p(x | \hat{\theta})] - d \log n$

(where d = number of free parameters and n = number of data points)