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Bayesian Model Selection (BMS)
BMS is another way of doing notion of hypothesis A vs. hypothesis B to explain the

data. The Bayesian information criterion(BIC) score is similar to chi-

square value in the traditional hypothesis testing.

Bayesian Information Criterion (BIC)
: This is also an approximately statistical approach, not rigorously defined.

ndMDPBIC log)ˆ,|(log2 −= θ

where D: Observed data,

M: Model (The Model is actually a family of models with unit variance and

unknown mean therefore θ̂ is needed),

θ̂ : The maximum likelihood estimator (LME) of parameters in the model,
d : The number of free parameters, and

n : The number of data points.

Note: BIC score is good for comparing models. A model with a higher BIC is a better

model, since if data fits well to the model, the log likelihood would be higher.

General model ! Mixture model BIC with multiple models

BIC with multiple parameter estimators

Multiple parameters get higher likelihood but it is penalized by the second term ( nd log ).

If we mix two Gaussian parameters, θ̂ becomes a pair. The likelihood will increase if
there’re more model parameters. The second term, nd log denotes a penalty term that

also increases if more parameters are used. Intuitively, more data points need higher

precision so it should be penalized.

Minimum Description Length (MDL) problem

Idea: Simpler is better. ! Completely heuristic approach.

Let’s define M as a model, θ as a parameter (vector), and D as observed data.
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This is based on the 2-stage experiment. 1) Pick θ and 2) Draw data points according to

θ . In this experiment, the above equation is a rigorous description of the model and

)|( DP θ denotes the posterior probability. It gives us a way to update the prior )(θP

after seeing the data points D.

Idea: )(θP is the prior probability, which is subjective. Based on subjective belief, we

can estimate )|( DP θ , the distribution of θ given the data.

By the law of total probability,

(1) ∫=
θ

θθθ dPDPDP )()|()( : Probability of data given the parameter

Suppose we have M1, M2, 1θ , and 2θ .
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Notice that )|( DP θ is independent of θ . From (1),

(3) ∫=
θ

θθθ iiiii dPMDPMDP )()|()|( : Integrated likelihood over the parameter

Now,
)|(

)|(

1

2

DMP

DMP
: Posterior odds ratio

The odds ratio needed to establish data from which the model came becomes the

following equation.
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Posterior Bayes Prior

Odds factor Odds

Example of prior odds: Situation in a bath with mixed fair and biased coins.

Note that Bayes factor explains the favors of probability of data to the given models.

Thus, the goal here is to determine the posterior odds that is updating the prior odds after

seeing the data as the data explains the model. Eventually, we want to estimate (3)

because )|(log2 MDPBIC ≅ . However, the integral in (3) often is unsolvable in

practice. So, let’s define )(θg as follows.



)()|(log)( θθθ PDPg =

By Taylor series expansion, )(θg can be expanded as the below equation.

(4) Λ+−+−+= )
~

('')
~

(
2
1

)
~

(')
~

()
~

()( 2 θθθθθθθθ gggg

At the mode, 0)
~

(' =θg . So the second term in (4) goes away. Therefore, (4) can be

approximately simplified as follows.
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Hint: The posterior mode would be close to the peak. The second derivative would be

negative since there’s a convex near the peak. The width is related to one of variances in

this distribution.

Width

Therefore, the second derivative term can be simplified. !
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This concluded equation doesn’t have any prior probability term, which was omitted

(By approximation not described here)
For multiple parameters



during the approximations by the assumption of unit information prior. The unit

information prior is a proper assumption, when we are not sure about the prior probability.

Interpretation of BIC values: BIC difference of 10 favors one model over the other by the

factor of about 150.

Approximations in this approach

1) Taylor series third and higher order expansions are ignored.

2) In the posterior distributions, the mode is observed to be near local maxima.

3) O(1) doesn’t go to zero if data set becomes bigger
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Covariance Model
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k DAD∑= λ : Covariance matrix for kth cluster

kλ , kD , and kA explain volume, orientation, and shape of the distribution, respectively.

Equal volume spherical model (EI): similar to k-means model
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Unequal volume spherical model (VI)

∑
k

k Iλ

Diagonal model: cluster shapes parallel to axes
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kk Bλ where kB is diagonal, 1|| =kB

EEE elliptical model: cluster shapes parallel to each other
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Unconstrained model (VVV)
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Bottom line: BIC allows to choose the best possible model whereas MLE will always

favor VVV model. In general, VVV model is the best model in terms of the highest

likelihood, however it needs larger number of parameters.

More

flexible,

but more

parameters


