
CSE 533: PCPs and Hardness of Approximation Autumn 2005

Problem Set 1
Due: Wednesday, November 16

Homework policy: Students are encouraged to work on the problems in groups; however, all
writeups should be done individually. We suggest that you think about and try to solve all the
problems, but it is enough to turn in write-ups for any six problems.

1. Hardness-of-approximation reductions. H̊astad proved a version of the PCP Theorem
(as stated in Lecture 1) in which: completeness is 1 − ε; soundness is 1/2 + ε; the number of
queries C is 3; and, all predicates ψ the verifier uses are of the form “xi1 + xi2 + xi3 = b mod 2”,
where b is 0 or 1. Here ε can be any positive constant. (We will prove this result later in the course.)

a) Assuming P 6= NP, show that the following statement is false: “There is a probabilistically
checkable proof for an NP-complete problem in which a) three bits of the proof get queried, b) all
predicates are of the form “xi1 + xi2 + xi3 = b mod 2”, c) completeness is 1, and d) soundness is
51%.” (NB: We only consider PCPs with nonadaptive verifiers, as described in Lecture 1.)

b) Let MAX-3LIN be the maximization problem where the input is a set of 3-variable linear
equations mod 2 and the goal is to find an assignment satisfying as many equations as possible.
Show that for any ε > 0, there is no (1/2 + ε)-approximation algorithm for MAX-3LIN unless
P = NP.

c) Show that there is no (7/8 + ε)-approximation algorithm for MAX-E3SAT unless P = NP,
as mentioned in class. (Hint: reduce from the hardness of MAX-3LIN.)

d) Let MAX-3MAJ be the optimization problem where the input is a set of constraints over 3
boolean literals each, where each constraint asserts that the majority of its three literals’ values is 1.
(E.g., a constraint might be “Maj(x1, x3, x7) = 1”.) Show that there is no (2/3 + ε) approximation
for MAX-3MAJ unless P = NP. (Hint: reduce from the hardness of MAX-3LIN.)

A remark: There is a 2/3-approximation algorithm for MAX-3MAJ due to Zwick; however it
is quite nontrivial.

2. 2-Prover 1-Round Games. A “2-Prover 1-Round Game” (2P1R Game) is a kind of proof
system for languages L that works as follows: There are two “all-powerful” provers P1 and P2 and a
polynomial-time verifier V . There are also polynomial-sized “question sets” Q and R and constant-
sized “answer sets” A and B. The two provers are allowed to coordinate strategies beforehand, but
once the “game” starts they cannot communicate with each other. The game consists of an input
x ∈ {0, 1}n which the provers and the verifier all see; the provers have to try to convince the verifier
that x ∈ L.

On input x, the verifier first does some deterministic computations and then decides on: a) a
probability distribution π on Q×R, and b) a (deterministic) predicate ϕ on Q×R×A×B. Next,

1

the verifier uses randomness to draw a pair of “questions” (q, r) ∈ Q × R according to π. The
verifier sends q to P1 and r to P2. The provers, based on x and the question they receive, send back
“answers”; P1 returns some a ∈ A and P2 returns some b ∈ B. (Recall that the provers are not
allowed to communicate.) Finally, V applies ϕ to (q, r, a, b) and accordingly either accepts or rejects.

a) Show that it doesn’t help the provers if they are allowed to use randomness.

b) We will show later in class that for every constant ε > 0 there exists a constant-sized alphabet
Σ such that GAP-CG1,ε(Σ) is NP-hard. Using this fact, show that for every L ∈ NP and every
ε > 0 there is a 2P1R Game for L in which the verifier accepts every x ∈ L with probability 1 and
accepts every x 6∈ L with probability at most ε. (Hint: what extra graph property is needed for
2P1R Games?)

3. Error reduction using expanders. Let G = (V, E) be an (n, d, λ)-expander with λ < d
constants. Let B ⊂ V be a set of vertices with |B| = αn, where 0 < α < 1. (We think of B as a
“bad” set of vertices.) Suppose we pick a uniformly random vertex in G and then perform a t-step
random walk in G starting from this vertex. We wish to upper-bound the probability γ that all
vertices encountered are in B.

a) Let A denote the normalized adjacency matrix of G, and let P denote the matrix correspond-
ing to “projection onto B”; in other words, P is the n×n diagonal matrix with 1’s in the positions
corresponding to B. Show that γ = ‖PAPAP · · ·APx‖1, where x is the vector (1/n, . . . , 1/n),
‖z‖1 denotes

∑n
i=1 |zi|, and the matrix product PAPAP · · ·AP has precisely t A’s.

b) The “matrix 2-norm” of a matrix C is defined to be ‖C‖2 := maxy 6=0 ‖Cy‖2/‖y‖2. Show
that γ ≤ α‖PAPAP · · ·AP‖2 ≤ (‖AP‖2)t.

c) Show that ‖AP‖2 ≤
√

α2 + (λ/d)2, and conclude γ ≤ (α2 + (λ/d)2)k/2. (Hint: given arbi-
trary y 6= 0, write z = Py and express z = z‖ + z⊥ as in Lecture 3. . .) Bonus: show that in fact
‖PAP‖2 ≤ λ/d + α(1− λ/d) and show how this can be used to conclude the sharper upper bound
γ ≤ α(λ/d + α(1− λ/d))t.

d) Suppose we have an RP algorithm for a problem; i.e., on NO instances the algorithm always
says NO and on YES instances the algorithm says YES with probability at least 1/4. Further sup-
pose that the algorithm uses r random bits. Naive serial repetition reduces the error probability
to (3/4)t using rt random bits. Show that the same error probability can be achieved using only
O(r + t) random bits.

A remark: With a little more effort, a similar randomness-efficient error amplification can be
done for BPP algorithms.

e) Show that there is a PCP for NP with completeness 1 and soundness 1/n in which the verifier
uses O(log n) random bits (as opposed to O(log2 n)) and queries O(log n) bit positions in the proof.

2

4. Hardness of Clique, and graph products.

a) Improve the hardness result we showed in class for Clique by proving that for some α > 0,
there is no n−α-approximation algorithm for Clique unless P = NP. (Hint: Apply the FGLSS
reduction to the PCP of Problem 3(e).)

We will now explore a different language, namely that of graph products, for boosting hardness-
of-approximation results for Clique. For a graph G = (V,E) and integer k ≥ 2, we define the
kth power of G, Gk = (V ′, E′), as follows: The vertex set V ′ equals V k, the set of k-tuples of
vertices of G. Two distinct vertices (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are adjacent in E′ if and
only if {u1, u2, . . . , uk, v1, . . . , vk} is a clique in G (note that the ui and vj do not have to be distinct).

b) Prove that the powering operation defined above satisfies ω(Gk) = ω(G)k.

c) Use (b) to prove that if Clique is NP-hard to approximate within some constant factor
ρ < 1, then

(i) it is NP-hard to approximation within any constant factor ε > 0, and

(ii) Clique does not admit a polynomial time 2− logγ n-approximation algorithm for any γ < 1
unless NP ⊆ ⋃

c≥1 DTIME(2(log n)c
).

d) Suppose for some ε > 0 there is a polynomial time algorithm that on input a graph H on
n vertices, returns a clique of size at least ω(H)/n1−ε. Prove that for every a > 0, there is a ran-
domized polynomial time algorithm that, when given a graph G on N vertices with ω(G) ≥ a ·N ,
outputs a clique of size ba,ε ·N in G, where ba,ε > 0 is a constant depending on a, ε. (Hint: Take a
larger power Gk of G for k = Θ(log N). This graph is too big, so work with a subgraph obtained
by sampling a suitable polynomial number NO(1) vertices from Gk.)

e) Using (d), argue that the same hypothesis about existence of approximation algorithms for
Clique implies that a 3-colorable graph on N vertices can be colored using O(log N) colors in
randomized polynomial time.

A remark: The proof technique of (d) can also be used to show that for some α > 0, an n−α-
approximation algorithm for Clique implies NP = RP. The conclusion can also be strengthened
to NP = P using a derandomization of the sampling procedure.

5. Amplification fails beyond 1/2. (This problem is due to Andrej Bogdanov.) As we saw in
class, the Powering step in Dinur’s construction yielded gap′ ≥ 2min(gap, 10−6) when the parame-
ter t was a large enough fixed constant. But what if gap is already quite large — could repeating
the Powering step push gap′ all the way towards 1? This problem gives a negative answer.

a) It is known that for infinitely many constants d there exist (n, d, λ)-expanders G for infinitely
many n, with the following two properties: (i) λ(G) ≤ 2

√
d; (ii) G has “girth” at least 2

3 logd n,
where the girth of a graph is the length of the smallest cycle in it. Suppose we make G into a con-
straint graph over the alphabet {0, 1} by putting an “inequality” constraint on every edge. Show
that the satisfiability gap of G is at least 1/2−O(1/

√
d).

b) On the other hand, show that for any fixed parameter t, if n is large enough, then the
Powered constraint graph G′ produced from it via Dinur’s method has gap′ ≤ 1/2.

3

6. Fourier interpretations. Let f : {−1, 1}n → R and write the “Fourier expansion of f”,
f =

∑
S⊆[n] f̂(S)χS . All probabilities and expectations in this question are with respect to the

uniform product probability distribution on {−1, 1}n.

a) Given a set S ⊆ [n], define f≤S : {−1, 1}n → R by

f≤S =
∑

T :T⊆S

f̂(T)χT .

Note that f≤S(x) actually only depends on the bits of x in S; call these bits xS . Show that f≤S(xS)
is equal to the expected value of f conditioned on the bits xS . (The expectation is thus over the
bits of x not in S.)

b) Suppose f ’s range is {−1, 1}; i.e., f is a boolean-valued function. We define the influence of
the ith coordinate on f to be Infi(f) := Prx[f(x) 6= f(x(i))], where x(i) denotes the string x with
the ith bit flipped. This measures how sensitive f is to flipping the ith coordinate. Show that

Infi(f) =
∑

S:i∈S

f̂(S)2.

c) Again, suppose f is a boolean-valued function. f is said to be monotone if f(x) ≥ f(y)
whenever x ≥ y. (By x ≥ y we mean xi ≥ yi for all i.) For example, AND, OR, and Majority are
monotone functions; Parity is not monotone. Show that if f is monotone then Infi(f) = f̂({i}) for
each i ∈ [n].

d) Once more, suppose f is boolean-valued. Suppose we pick x ∈ {−1, 1}n at random and
then form a string y ∈ {−1, 1}n as follows: for each i = 1 . . . n independently, we set yi = xi with
probability ρ and set yi to be a uniformly random bit with probability 1− ρ. The noise stability of
f at ρ is defined to be

Stabρ(f) := 2 Pr[f(x) = f(y)]− 1,

a number in the range [−1, 1]. This measures in some way how stable f is when you flip about
1
2(1− ρ) input bits. Show that

Stabρ(f) =
∑

S⊆[n]

f̂(S)2ρ|S|.

7. A “Long Code” test. Let C be a set of boolean functions {−1, 1}n → {−1, 1}. A local test
for C works as follows: Given an unknown f : {−1, 1}n → {−1, 1} (as a table of values), a local
test makes some q queries to f . If f ∈ C the test should accept with probability 1; if f is δ-far from
every function in C then the test should reject with probability at least Ω(δ). In class, we saw the
BLR test, which is a 3-query local test for the class of linear functions L = {χS : S ⊆ [n]}. In this
problem we will develop a 6-query local test for the set of “dictator functions”, D = {χ{i} : i ∈ [n]};
i.e., the set of n functions of the form f(x) = xi.

a) Explain why a local test for a class C is not necessarily also a local test for a subclass C′ ⊂ C.
Give an example of a function that demonstrates that BLR is not a proper local test for D.

b) Let a, b, c ∈ {−1, 1} be bits. Write an expression that is 1 they are “not all equal” (NAE)
and is 0 if they are all equal.

4

c) Consider the following 3-query test, called the “NAE test”, on an unknown function f : Pick 3
strings x, y, z ∈ {−1, 1}n at random by choosing each triple (xi, yi, zi) independently and uniformly
at random from the set of strings {−1, 1}3 \ {(−1,−1,−1), (1, 1, 1)}; then test that f(x), f(y), and
f(z) are NAE. Show that

Pr[NAE test accepts] =
3
4
− 3

4

∑

S⊆[n]

f̂(S)2(−1/3)|S|.

Clearly if f ∈ D, the NAE test accepts with probability 1.

d) Give a 6-query local test for D. (Hint: combine the BLR test and the NAE test.)

Remark: Actually, the NAE test is already a 3-query local test for D; however it is a little
tricky to prove this. As for the title of this problem, historically in the PCP literature the dictator
functions in D are called Long Code codewords; the reason is that one can think of the n strings in
D as encoding n messages from {−1, 1}log n. This is an error-correcting code with double exponential
blowup; in fact, it is the longest binary error-correcting code which doesn’t have duplicated bits in
the encoding.

8. Orthogonal decomposition. Using the “Fourier representation”, any function f : {−1, 1}n →
R can be written as f =

∑
S⊆[n] f

S , where the decomposition has the following three properties:
(i) fS(x) depends only on the coordinates of x in S; (ii) Ex[fS(x)fT (x)] = 0 if S 6= T ; (iii)

∑
T⊆S fT ,

denoted f≤S , gives the conditional expectation of f conditioned on the coordinates in S. (See prob-
lem (6a).) To achieve this decomposition, we simply take fS to be f̂(S)χS .

In this problem we establish the same kind of decomposition for general functions on product
probability spaces. Specifically, let X be any finite set and let π be a probability distribution on
X. We think of the n-fold product set Xn as having the product probability distribution given by
π. Let f : Xn → R be any function.

a) We first make condition (iii) above hold by fiat: For S ⊆ [n], we define f≤S : Xn → R to
be the function depending only on the coordinates in S giving the conditional expectation; i.e.,
f≤S(xS) = E[f | xS], where the expectation is over the product probability distribution on the
coordinates outside S. Now given this definition, explicitly write how we should define the functions
fS so that (i) holds and so that the equations f≤S =

∑
T⊆S fT hold. (Hint: inclusion-exclusion.)

b) Show from the definition that Ex[f≤S(x)f≤T (x)] = Ex[f≤(S∩T)(x)2].

c) Now show that E[fS(x)fT (x)] = 0 when S 6= T . (Hint: write the definition from (a) and
then use (b).)

Remark: This “orthogonal decomposition” of functions f is often a good substitute for Fourier
analysis when the domain is a product probability space other than {−1, 1}n.

5

