
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 15: Set Cover hardness and testing Long Codes
Nov. 21, 2005

Lecturer: Venkat Guruswami Scribe: Atri Rudra

1 Recap
We will first recall the reduction from Label Cover to Set Cover that was covered in the last lecture.
We start with a label cover instance

L = (G = ((V1, V2), E) , Π, Σ)

(where |Σ| = m) and we get an instance of set cover

S = (U = E ×B, {Swa | w ∈ V1 ∪ V2, a ∈ Σ}) .

Recall that (B; C1, . . . , Cm) was an (m, `)-system, that is, if the union of at most ` sets of the form
Ci or Cj is B then the collection must contain both Ck and Ck for some 1 ≤ k ≤ m. Let Value(L)
denote the largest fraction of edges satisfied by an assignment of labels to V1 ∪ V2. We now recall
the completenss and soundness claims from last class:

1. If Value(L) = 1 then S has a set cover of size | V1 | + | V2 |.

2. If Value(L) < ε then all set covers of S have size at most `
8
(| V1 | + | V2 |), provided 2

`2
> ε.

Thus, we have a gap of `
8
.

2 Completing the Hardness of approximation of Set Cover
To complete the reduction we start with the fact that for every ε > 0, GapLC1,ε is NP-hard. As was
mentioned earlier, one can construct an (m, `)-system with |B| = O(22`m2) (more on this soon).
If ` and m are constants then the size of S is O(|E|) and the reduction proceeds in polynomial
time. Finally for any constant c, setting ` = 8c and ε < 2/`2, we have

Theorem 2.1. For any constant c, it is NP-hard to approximate SET-COVER within a factor of c.

In fact, under a stronger assumption, we have the following result–

Theorem 2.2. There exists a c > 0 such that SET-COVER cannot be approximated within a factor
of c log N (where N is the universe size) unless NP ⊆ TIME(nO(log log n)).

1

Proof. We will investigate the parameters in more details to prove the above result — the reduction
itself is the same as in Theorem 2.1.

To start with GapLC1,ε being NP-hard, we used Raz’s parallel repetition theorem with k =

O(log(1/ε)) repetitions, which implies that |E| = nO(k) = nO(log(1/ε)) and m = 2O(k) = (1/ε)O(1)).
Further, we will show in Section 2.1 that an (m, `)-system B exists with |B| = O(22`m2). Hence
the universe size is

N = |U | = |E||B| = nO(log(1
ε
))2O(`)

(
1

ε

)O(1)

.

Further, the running time is NO(1). Finally, if we have ε < 2/`2, then we will have a gap of `/8.
To complete the proof we instantiate ` and ε:

` = log n log log n,

ε =
1

log3 n
.

Note that with the above, ε < 2/`2 holds. Further, N = nO(log log n)2O(log n log log n) = 2O(`). Thus,
the gap is `/8 = Ω(log N) as required. Finally the run time of the reduction is NO(1)=nO(log log n)

which is the reason for the assumption NP 6⊆ TIME(nO(log log n)).

2.1 Construction of an (m, `)-system
We begin with a related notion of (m, `)-universal family.

Definition 2.3. Let B be a collection of binary strings of length m, that is, B ⊆ {0, 1}m. B is an
(m, `)-universal family if for all 1 ≤ i1 < i2 · · · < i` ≤ m and every possible a ∈ {0, 1}`, there
exists x ∈ B such that xi1 = a1, xi2 = a2, . . . , xi` = a`.

The following lemma shows that the notions of (m, `)-system and (m, `)-universal family are
closely related.

Lemma 2.4. Let B be an (m, `)-universal family and define Ci = {x ∈ B | xi = 1}. Then
(B; C1, . . . , Cm) is an (m, `)-system.

Proof. For the sake of contradiction, assume that there exist Di1 , Di2 , . . . , Di` such that Di1∪Di2∪
· · · ∪Di` = B, where each Dij is either Cij or Cij (note that this implies that there are no j and k

such that Dij = Dik). Define

aj =

{
0 if Dij = Cij

1 if Dij = Cij

As B is an (m, `)-universal family, there exists an x ∈ B such that xij = aj for 1 ≤ j ≤ `. Now
note by construction, x 6∈ Dij for any j, which implies that x 6∈ ∪`

j−1Dij = B: a contradiction.

Armed with this lemma, we will now just look for an (m, `)-universal family.

2

Theorem 2.5. There exist explicit (m, `)-universal family B of size O(22`m2). Moreover, B can
be constructed in 2O(`)mO(1) time.

Proof. (Sketch) We say a collection B ⊆ {0, 1}m is (`, γ)-independent if the following holds for
every i1, i2, . . . , i` and a ∈ {0, 1}`:

| Prx∈B [xi1 = a1 ∧ · · · ∧ xi` = a`]−
1

2`
|≤ γ.

Note that if B is (`, γ)-independent for γ < 2−`, then B must be an (m, `)-universal family.
The high level view of the construction is then as follows:

1. Start with an ε-biased family B ⊆ {0, 1}m, i.e., a collection B such that for every nonzero
linear function LS : {0, 1}m → {0, 1}, LS(x) = 〈x, χS〉,

|
∑
x∈B

(−1)LS(x) |≤ ε .

That is, with respect to linear tests, the elements of B on average behave like random el-
ements and have at most ε bias. Explicit constructions of such an ε-biased family of size
O

(
m2

ε2

)
are known, see [1]. (When the elements of such a B are written in the form of a

matrix with m columns, its columns span a linear code in which all nonzero codewords have
(normalized) Hamming weight between (1/2− ε) and (1/2 + ε).)

2. By Vazirani’s XOR lemma (cf. [1]), an ε-biased family is itself (`, (1− 2−`)ε)-independent
for any `.

3. Choose ε = 2−` to conclude that such a B must be an (m, `)-universal family of size
O(m222`).

Remark 2.6. It can be shown by (an easy application of) the probabilistic method that there exist
an (m, `)-universal family of size O(2`` log m).

3 Hardness of approximation of E3-LIN-2

Recall the E3-LIN-2 problem– given linear equations of the form xi1 + xi2 + xi3 = bi (mod 2),
find a binary assignment to the variables which satisfies as many equation as possible.

We will now look at Håstad’s PCP, where each check that the verifier makes is of the XOR of
3 bits.

Theorem 3.1 (Håstad 1997). ([2])For every ε, δ > 0, NP ⊆ PCP1−ε,1/2+δ[O(log n), 3], where the
proofs are binary and every check made by the verifier is of the form “XOR of three proof bits
equals some value”.

3

Remark 3.2. The above result is tight, that is, s/c ≥ 1/2 for any PCPc,s[O(log n), 3] unless
P = NP.

Remark 3.3. One can get c = 1 and s = 1/2 + δ for arbitrarily small δ > 0 with 3 queries.
However, the checks are not XORs of proof bits (since they cannot be!)

For the rest of this and the next lecture, we will prove Theorem 3.1. As “usual”, our starting
point would be the fact that GapLC1,γ is NP-hard for all γ > 0.

To begin with, let us look at a natural verification strategy for a label cover instance
((G = (V1, V2), E), Σ, Π) given a labeling σ:

1. Pick a random edge e = (u, v) ∈ E.

2. Check Πe(σ(u)) = σ(v).

The above test has completeness 1 and soundness γ. However, the two queries are over a larger

alphabet (recall that |Σ| =
(

1
γ

)O(1)

).
Thus, the basic idea is to “simulate” the two queries over the larger alphabet Σ by reading just

3 bits– however, we lose on soundness (1/2 instead of γ). Note that the situation is similar to that
of Assignment Testers where we could not afford to look at the complete assignment. In particular
we need to check if Πe(a) = b without reading all of a and b. We will work with suitable encdings
of a and b which leads us to the next section.

4 Long codes
We will use long codes. For any a ∈ Σ = {1, . . . ,m}, its corresponding long code is defined as

LONG(a) = Had(~ea) = 〈x · ~ea〉x∈{0,1}m = 〈xa〉x∈{0,1}m ,

where in the above ~ea is the vector in {0, 1}m which has zeroes everywhere except at position a.
Note that the Hadamard code maps m bits to 2m bits while the long code maps m elements (or
equivalently log m bits) to 2m bits. In fact, the long code is so named because it is the longest
possible code without repeating bits in the codeword.

We will find it more convenient to work with the ±1 notation for Boolean values. Accordingly,
it is useful to think of the long code as a function, LONG(a) = A : {1,−1}m → {1,−1} such
that A(x) = xa (also called the dictatorship function).

4.1 Testing a long code
Let A : {1,−1}m → {1,−1} be a purported long code. If indeed it is the long code of some a,
then A(x) = xa, A(ya) = ya and A(xy) = xaya = A(x)A(y). Thus, one might propose the test
A(x)A(y)A(xy) = 1. However, there is a problem with this test– the above test is the exactly the
BLR test and thus, all linear functions will also pass the test with probability 1 which is not good.

4

We now consider the same BLR test with a “twist”. Pick µ ∈ {1,−1}m as follows (each bit is
chosen independently)

µi =

{
1 with probability 1− ε/2
−1 with probability ε/2

It is easy to see that E[µi] = 1− ε. We now consider the following test.

1. Pick x, y ∈ {1,−1}m uniformly at random.

2. Pick µ ∈ {1,−1}m as above.

3. Check if A(x)A(y)A(xyµ) = 1.

4.1.1 Completeness of the test

Suppose A = LONG(a). Then the test is equivalent to checking if

xayaxayaµa = µa = 1.

By the choice of µ the above happens with probability 1− ε
2

> 1− ε.

4.1.2 Soundness of the test

As we saw before, in some sense, the “bad” case for the test is when A is actually a linear function.
To develop some intuition for the soundness of the test, let us consider the case A = χS such that
| S | is large. In this case the test is the same as

χS(x)χS(y)χS(xyµ) = χS(µ) = 1.

In other words, the equality being tested for is

χS(µ) =
∏
i∈S

µi = 1.

So the probability of the test accepting equals

E
[
1 + χS(µ)

2

]
=

1

2
+

1

2
· E[χS(µ)] .

Now consider

E[χS(µ)] = E

[∏
i∈S

µi

]
=

∏
i∈S

E[µi] = (1− ε)|S|.

Note that the above expression goes to zero for large |S|. In fact, the above is at most ε for
|S| � 1

ε
. In other words the test accepts with probability at most 1/2 + ε which gives us the

claimed soundness.
Linear functions χS for small |S| still pass the test with good probability (and for |S| 6= 1

they are 1/2-far from dictator functions). But this will be okay for us since in this case we can
“list-decode” A into the subset S ⊆ {1, 2, . . . ,m}, which has a small number of elements (and
most importantly this number is independent of m).

We will formalize this argument and use it to construct a 3-query PCP in the next lecture.

5

References
[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise

independent random variables. Random Structures and Algorithms, 3:289–304, 1992.

[2] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

6

	Recap
	Completing the Hardness of approximation of Set Cover
	Construction of an (m,)-system

	Hardness of approximation of E3-LIN-2
	Long codes
	Testing a long code
	Completeness of the test
	Soundness of the test

