
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 6: Powering Completed, Intro to Composition
Oct. 17, 2005

Lecturer: Ryan O’Donnell and Venkat Guruswami Scribe: Anand Ganesh

1 Powering Completed
In the previous lecture we began the Powering step; this step takes (G, C), a constraint graph on
an (n, d, λ)-expander over a constant-sized alphabet Σ, and outputs (G′, C ′). The properties of the
new constraint graph are that size′ = O(size), the alphabet size remains a constant (albeit a much
much larger one), gap = 0 ⇒ gap′ = 0, and the main property:

gap′ ≥ t

O(1)
·min(gap, 1/t).

Here t is a fixed constant parameter. The transformation is based on the idea of constructing G′

from G by having edges in G′ correspond to walks of length about t in the original graph.
Let us go over the construction of G′ in more detail. As we said in the previous lecture, the

new alphabet is Σ′ = Σ1+d+d2+d3...+dt . The new edge set E ′ and constraint set C ′ are defined as
follows:

• E ′: Pick a random vertex a. Do an A.S.R.W. from a, ending on b. This generates a weighted
edge e′ = (a, b). As we noted, this seems like it might be a problem, since we get a) weighted
edges, and b) too many edges. We discuss this shortly.

• C′: Here is the test that is then applied to the labelling σ′ : V ′ → Σ′:

– If the number of steps in the A.S.R.W. was greater than B := (10ln|Σ|)t, then accept.

– Otherwise, for each step u → v along the path, if distG(a, u) ≤ t and distG(b, v) ≤ t
(i.e. the vertices are close enough that there will be opinions), and if (σ′(a)u, σ

′(b)v) is
violating for the old constraint on (u, v) ∈ E, reject

Fixing the problems: Given this construction of a weighted constraint graph (with multiple
edges and edges between all possible pairs!), throw away all paths e′ ∈ E ′ corresponding to walks
of length greater than B. Since these all had always-satisfied constraints, this can only cause the
gap to go up. Having done this, we get:

deg(G) ≤ 1 + d + d2 + d3... + dB = constant
size′ ≤ O(size).

1

The only problem left is that the edges still have weights, and we want unweighted constraint
graphs. However note that all the weights are simply rational numbers depending only on the uni-
versal constants d and t; hence we can replace them appropriately with parallel unweighted edges.
Thus we have fixed the annoying details associated with our randomized way of describing the
edges E ′ and can proceed to analyze the gap.

We now need to show that ∀σ′ : V ′ → Σ′,

Pr[test rejects σ′] ≥ t

O(1)
min(gap,

1

t
).

So let σ′ be the “best” assignment for our C ′. We extract an assignment σ : V → Σ from it based
on the plurality vote method analyzed in the previous lecture. Let F ⊂ E be the set of edges in G
violated by σ; we know that |F |/|E| ≥ gap. Throw away some edges from F is necessary so that
|F |/|E| = min(gap, 1/t).

We will now recall the notion of a “faulty step” from the previous lecture; however we will also
introduce the notion of a “faulty* step”, which is needed to analyze our B-truncated verifier.

Definition 1.1. Let e′ : a → b be a random path as chosen by our verifier. Step u → v is faulty if
the following hold:

• (u, v) ∈ F ,

• distG(a, u) ≤ t and σ′(a)u = σ(u),

• distG(b, v) ≤ t and σ′(b)v = σ(v).

We further define a step to be faulty* if

• the step is faulty,

• the number of steps in the overall a → b walk was at most B.

Let us also define some random variables based on the verifier’s A.S.R.W.:

Definition 1.2.

• N = number of faulty steps.

• N∗ = number of faulty* steps.

• S = total number of steps.

• NF = number of steps that were in F .

Note that by the definitions we have

N∗ = N · 1{S≤B},

and
N∗ ≤ N ≤ NF .

2

1.1 Analysis
The key point of the definition of faulty* steps is that whenever the verifier picks a random walk
that has a faulty* step (i.e., whenever N∗ > 0), the verifier rejects σ′. (Note that the verifier may
still reject even if it has no faulty* steps.) Thus we have

gap′ = Pr[test rejects σ′] ≥ Pr[N∗ > 0] ≥ E[N∗]2

E[(N∗)2]
,

where we used the Second-Moment Method in the last step as discussed in the last lecture. To
complete the proof we need to show that gap′ ≥ t

O(1)
· |F ||E| . Hence we are done if we can show the

following two lemmas:

Lemma 1.3. E[N∗] ≥ t
8|Σ|2 ·

|F |
|E|

Lemma 1.4. E[(N∗)2] ≤ O(1) · t · |F ||E|

Proof. (Lemma 1.3.) To prove the lower bound on E[N∗] we use the lemma from the last lecture
that said E[N] ≥ t

4|Σ|2 ·
|F |
|E| . We have

E[N∗] = E[N · 1{S≤B}]

= E[N · (1− 1{S>B)}]

= E[N]− E[N · 1{S>B}]

≥ t

4|Σ|2
· |F |
|E|

− E[N · 1{S>B}],

using the earlier lemma. Now,

E[N · 1{S>B}] = Pr[S > B] · E[N | S > B]

= (1− 1/t)B · E[N | S > B]

≥ exp(−B/t) · E[NF | S > B]

= exp(−B/t) · E[S | S > B] · |F |
|E|

= exp(−B/t) · (B + t) · |F |
|E|

≥ 1

|Σ|10
· (20 ln |Σ| · t) · |F |

|E|
(by definition of B)

≥ t

8|Σ|2
· |F |
|E|

,

since (20 ln |Σ|)/|Σ|10 ≤ 1/(8|Σ|2). Combining the above two calculations completes the proof.

3

Proof. (Lemma 1.4) The proof of this lemma is the only place where we use the fact that G is an
(n, d, λ)-expander. In fact, this is all we use — that in a length L random walk on an expander,
the number of times you hit a fixed set of edges is about what you would get if you just picked L
random edges. In particular, we start with the trivial upper bound

E[(N∗)2] ≤ E[(NF)2].

Let us express Nf =
∑∞

i=1 χi, where χi = 1[ith step is in F]. We have:

E[(NF)2] =
∞∑

i,j=1

E[χi · χj]

≤ 2
∞∑
i=1

Pr[χi = 1] ·
∑
j≥i

Pr[χj = 1 | χi = 1] (*)

Now Pr[χj = 1 | χi = 1] is 1 if j = i; otherwise it equals

Pr[the walk takes at least j − i more steps]
× Pr[a walk, starting from a random F endpoint, takes its (j − i)th step in F].

The first quantity here is just (1− 1/t)j−i. The second quantity, from Lecture 3’s expander lemma
on this subject, is at most |F |/|E|+ (λ/d)j−i−1. Now substituting this into (*), we get:

E[(N∗)2] ≤ 2
∞∑
i=1

Pr[χi = 1] ·

(
1 +

∞∑
`=1

(1− 1/t)`

(
|F |
|E|

+ (λ/d)`−1

))

2
∞∑
i=1

Pr[χi = 1] ·

(
1 +

∞∑
`=1

(1− 1/t)` · |F |
|E|

+
∞∑

`=1

(λ/d)`−1

)

≤ 2
∞∑
i=1

Pr[χi = 1] ·
(

1 + (t− 1) · |F |
|E|

+ O(1)

)
(since λ < d are consts)

≤ O(1) ·
∞∑
i=1

Pr[χi = 1] (since |F |/|E| ≤ 1/t)

= O(1) · E[NF]

= O(1) · t |F |
|E|

,

as claimed.

2 Introduction to Composition
We are now at stage 4 of the proof of the PCP theorem called Alphabet Reduction or Composition.
Given a constraint graph with a large alphabet size, the problem is to reduce the alphabet size

4

(Σdt → Σ0 where |Σ0| is an absolute constant, say 64) without adversely affecting other parameters
like the gap. In simplified terms, the composition step may be thought of as a recursive step (with
some extra features) within the larger PCP reduction as we will describe below.

Recall that the PCP may be cast in the following form. It is a reduction P such that maps a
Boolean constraint (a 3SAT formula, or a Boolean circuit) Φ into a constraint graph (G, C) over a
fixed alphabet Σ0 such that

P : Φ → (G, C) such that
Φ satisfiable =⇒ (G, C) satisfiable

Φ not satisfiable =⇒ gap(G) > ε i.e. < 1− ε of the constraints in C are satisfiable

Consider a constraint graph H = Gt obtained after the powering step. Let ce be the constraint
on edge e. This is a binary constraint over a large alphabet (like Σdt). We can express it as a
Boolean constraint Φce over several Boolean variables (using some standard encoding), and apply
a PCP reduction as above, call it Pe, to this constraint to get a new set of binary constraints over the
alphabet Σ0. Thus, we can reduce the alphabet size, and if the original ce was not satisfied at least
an ε fraction of the newly produced constraints over Σ0 must be unsatisfied by any assignment.
Therefore, one also expect that the new gap is at least ε · gap(H), and the alphabet is now Σ0.

Of course, our whole goal is to construct a PCP reduction, so how can we use a PCP reduction
recursively without falling prey to a circular argument? The key is that we will apply this “inner”
PCP reduction only to constraints of constant size and thus the reduction can be arbitrarily inef-
ficient (and hence perhaps easier to construct). Therefore, the hope would be to construct from
scratch a highly inefficient PCP reduction, and use it as above.

Consistency. However, there is a subtle issue which makes the above recursion not as straight-
forward as we suggested. Suppose e = (u, v) and e′ = (v, w) are two edges in the constraint graph
H that share a vertex v. The reductions Pe and Pe′ ensure that the constraints ce and ce′ are both
individually satisfiable. However, we need to ensure that the constraints in H are all satisfied by
a single, common assignment to the variables. In particular, this means that we need to check not
only that ce and ce′ are satisfiable, but that they are satisfied by assignments which are consistent
on the shared variable v. This consistency will be achieved by imposing additional requirements
on the PCP reduction using an entity called the Assignment Tester.

Roughly speaking, an assignment tester checks that a constraint is satisfied by a particular
assignment to its variables. So in the above recursive appraoch, we assume that we are given an
assignment σ(v) to each of the variables in H , and the assignment tester corresponding to edge
e = (u, v) must check that (σ(u), σ(v)) satisfies the constraint ce. Now consider the case where
(σ(u), σ(v)) differs from a satisfying assignment to ce in just one bit. Then, most constraints of the
assignement tester may accept, whereas we want a constant fraction of them to reject. Thus this is
too stringent a task to impose on the assignment tester.

We relax the requirement so that the assignment tester must check proximity of the claimed
assignment to a satisfying assignment of the constraint in the Hamming metric. As we will see

5

in the next two lectures, this task becomes feasible. But let us see how this relaxation affects the
composition idea.

Consider edges e = (u, v) and e = (v, w) sharing a vertex v. Given vertex assignments for
vertices u, v, w, Pe checks that σ(v) is close to x1v that (together with some assignment to u)
satisfies ce. Pe′ checks that σ(v) is close to x2v thatsatisfies ce′ . We want to enforce consistency
on the label to v, i.e., x1v = x2v — this is the goal. In other words, for any assignment σ(v)
there should be a unique legal, satisfying assignment that is very close to σ(v). This condition
can be met if and only if the legal assignments to the vertices are all pairwise far apart from each
other, or in other words they form an error-correcting code. Hence, codes enter naturally into this
framework.

6

	Powering Completed
	Analysis

	Introduction to Composition

