EE/CSE 576

HW 1 Notes

Overview

e Assignment 1 is a big set of exercises to code
functions that are basic and many of which
are needed for future assignments.

e Sample functions are provided at the
beginning of the code, so you get an idea how
to work with the images in Qt.

 The required functions come from the lectures
on filtering, edge finding, and segmentation.

Qlmage Class
in the QT package

The Qimage class provides a hardware-
independent image representation

Some of the useful methods
— QIlmage() (and other forms with parameters)

— copy(int x, int y, int width, int height) const

— setPixel(int x, int y, uint index_or_rgb) can use
function gRgb(intr, int g, int b)

— width() const, height() const
The QRgb class holds a color pixel.

from http://doc.qgt.io/qt-4.8/qimage.html

Double Arrays

We’ve modified the original assignment, which had
truncation problems when passing images around.

Instead, you will pass around arrays of doubles.

The function ConvertQlmage2Double() that we provide will
convert a Qimage to a 2D matrix.

The first dimension handles both columns (c) and rows (r),
while the second one specifies the color channel (0, 1, 2).

Position (c,r) maps to r*imageWidth + c.
This will lead nicely in HW 2, which also uses doubles.
You don’t have to convert back to Qimage!

You do have to copy any images that you are going to
modify.

1. Convolution

The first task is to code a general convolution
function to be used in most of the others.

void Convolution(double **image, double *kernel, int
kernelWidth, int kernelHeight, bool add)

image is a 2D matrix of class double

kernel is @ 1D mask array with rows stacked horizontally
kernelWidth is the width of the mask

kernelHeight is the height of the mask

if add is true, then 128 is added to each pixel for the result to
get rid of negatives.

Reminder: 2D Gaussian function with standard deviation o

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:

1 2242
G(:c;y) — 271_0_26 20

This distribution is shown in Figure 2.

0.2 -
015
=
,.:: 0.1
)
0.05
ik
0 gl
e I,

e ".':"

Figure 2 2-D Gaussian distribution with mean (0,0} and &=1

2. Gaussian Blur

The second task is to code a Gaussian blur
which can be done by calling the Convolution
method with the appropriate kernel.

void GaussianBlurlmage(double **image,
double sigma)

Let the radius of the kernel be 3 times ¢
The kernel size is then 2 * (radius + 1)

3. Separable Gaussian Blur

* Now implement a separable Gaussian blur
using separate filters for the horizontal blur
and then the vertical blur. Call your
Convolution function twice.

e void SeparableGaussianBlurimage(double
**image, double sigma)

 The results should be identical to the 2D
Gaussian Blur.

4. First and Second Derivatives
of the Gaussian

void FirstDerivative x(double **image, double sigma) takes the
image derivative in the x direction using a 1*3 kernel of {-1.0, 0.0,
1.0 } and then does a standard Gaussian blur.

void FirstDerivative y(double **image, double sigma) takes the
derivative in the y direction and then does a standard Gaussian blur

void SecondDerivimage(double **image, double sigma) computes
the Laplacian function and then does a standard Gaussian. For the
Laplacian, rather than taking the derivative twice, you may use the
2D kernel:

0.0, 1.0, 0.0
1.0,-4.0,1.0
0.0, 1.0, 0.0

All of these add 128 to the final pixel values in order to see
negatives. This is done in the call to Convolution().

5. Sharpen Image

e Sharpen an image by subtracting the
Gaussian-smoothed second derivative image
from the original. Will need to subtract back
off the 128 that second derivative added on.

e void Sharpenimage(double **image, double
sigma, double alpha)

e Sigma as usual and alpha is the constant to
multiply the smoothed 2"? derivative image
by.

6. Sobel Edge Detector

Implement the Sobel operator, produce both the
magnitude and orientation of the edges, and display them.

void Sobellmage(double **image)
Use the standard Sobel masks:
-1, O, 1,

7. Bilinear Interpolation

e Given an image and a real-valued point (x,y),
compute the RGB values for that point through
bilinear interpolation, which uses the 4 closest
pixel value.

e void BilinearInterpolationdouble **image, double
X, double y, double rgb[3])

 Put the red, green, and blue interpolated results
in the vector rgb.

(x,y)
o

12

8. Find Peaks of Edge Responses

This function finds the peaks of the edge responses
perpendicular to the edges.

void FindPeakslmage(double **image, double thres)

It first uses Sobel to find the magnitude and orientation
at each pixel.

Then for each pixel, it compares its edge magnitude to
two samples perpendicular to the edge at a distance of
one pixel, which requires BilinearInterpolation().

If the pixel edge magnitude is e and these two are el
and e2, a peak e must be larger than “thres” and larger
than or equal to el and e2.

See next slide.

13

edge thru

el the pixel

pixel (c,r)

“perpendicular
to edge

elx=c+ 1 * cos(6); Example: r=5, c=3, 6=135 degrees
ely=r+1 *sin(0); sin 8 =.7071, cos 6 =-.7071
e2x=c—1 * cos(0); el =(2.2929,5.7071)

e2y =r—1 *sin(6); e2 =(3.7071, 4.2929)

14

9. Color Clustering

Perform K-means clustering on a color image first
with random seeds and then by selecting seeds
from the image itself.

void RandomSeedimage(double **image, int
num_ clusters)

void PixelSeedlmage(double **image, int
num_clusters)

Use the RGB color space, and the distance
between two pixels with colors (R1,G1,B1) and
(R2,G2,B2) is |R1-R2|+|G1-G2|+|B1-B2].

Use epsilon = 30 or max iteration# = 100

15

	EE/CSE 576
	Overview
	QImage Class�in the QT package
	Double Arrays
	1. Convolution
	Slide Number 6
	2. Gaussian Blur
	3. Separable Gaussian Blur
	4. First and Second Derivatives �of the Gaussian
	5. Sharpen Image
	6. Sobel Edge Detector
	7. Bilinear Interpolation
	8. Find Peaks of Edge Responses
	Slide Number 14
	9. Color Clustering

