Introduction to LS/LS+

LS+

LS

Laura Elisa Celis

University of Washington

February 21, 2007

University of Washington

- 4 同 6 4 日 6 4 日 6

Cutting Planes Methods

Given a 0-1 integer program:

• Consider feasibility instead of optimization.

Cutting Planes Methods

Given a 0-1 integer program:

- Consider feasibility instead of optimization.
- Relax given integer linear program and consider polytope satisfying constraints.

くほう くうり くうり

Cutting Planes Methods

Given a 0-1 integer program:

- Consider feasibility instead of optimization.
- Relax given integer linear program and consider polytope satisfying constraints.
- Transform through "cuts" to integral hull of valid solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	LS	LS+	Separation Oracles
	• 000	000	000
	• 00000	0000000	00
Review			

A cone K is a subset of \mathbb{R}^n where $x \in K$ if and only if $cx \in K$ for any constant $c \ge 0$.

University of Washington

- 4 回 > - 4 回 > - 4 回 >

Introduction	LS ●000 ○○○○○○	LS+ 000 0000000	Separation Oracles
Review			

A cone K is a subset of \mathbb{R}^n where $x \in K$ if and only if $cx \in K$ for any constant $c \ge 0$.

Definition

K is the cone of feasible points given by the linear program.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	LS	LS+	Separation Oracles
	●000	000	000
	○00000	0000000	00
Review			

A cone K is a subset of \mathbb{R}^n where $x \in K$ if and only if $cx \in K$ for any constant $c \ge 0$.

Definition

K is the cone of feasible points given by the linear program.

Goal:

Determine if the set of integer points in K is nonempty.

・ 同 ト ・ ヨ ト ・ ヨ ト

Cone Formulation of LS

Definition

 $x \in N(K)$ if and only if there is a matrix Y such that:

LS

0000

- The first row of Y is x.
- The diagonal of Y is x (corresponds to $x_i^2 = x_i$).
- Y is symmetric $(Y_{ij} = Y_{ji} \text{ corresponds to } x_i x_j = x_j x_i)$.
- All rows of Y are in K (corresponds to multiplying by x_i).
- All $Y_0 Y_i$ are in K (corresponds to multiplying by $1 x_i$).

LS+

- 4 同 6 4 日 6 4 日 6

Cone Formulation of LS

Definition

 $x \in N(K)$ if and only if there is a matrix Y such that:

LS

0000

- The first row of Y is x.
- The diagonal of Y is x (corresponds to $x_i^2 = x_i$).
- Y is symmetric $(Y_{ij} = Y_{ji} \text{ corresponds to } x_i x_j = x_j x_i)$.
- All rows of Y are in K (corresponds to multiplying by x_i).
- All $Y_0 Y_i$ are in K (corresponds to multiplying by $1 x_i$).

LS+

Goal:

Show that N(K) is stronger than K.

- 4 同 6 4 日 6 4 日 6

Validity of Cuts

Review

Theorem If K^0 is convex hull of 0-1 vectors in K, then $K^0 \subseteq N(K) \subseteq K$.

Validity of Cuts

Review

Theorem If K^0 is convex hull of 0-1 vectors in K, then $K^0 \subseteq N(K) \subseteq K$.

Proof Trivially, $N(K) \subseteq K$.

-

- 4 同 ト 4 ヨ ト 4 ヨ ト

Validity of Cuts

Review

Theorem

If K^0 is convex hull of 0-1 vectors in K, then $K^0 \subseteq N(K) \subseteq K$.

Proof

Trivially, $N(K) \subseteq K$. If x is a 0-1 vector in K^0 , the matrix $Y = xx^T$ satisfies all necessary constraints.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	LS 000● 000000	LS+ 000 0000000	Separation Oracles 000 00

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} & \cdots & x_{0}x_{i} & \cdots & x_{0}x_{n} \\ \vdots & \ddots & & \vdots \\ x_{i}x_{0} & & x_{i}x_{i} & & x_{i}x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

Ξ.

イロン イロン イヨン イヨン

Introduction	LS	LS+	Separation Oracles
	0000 000000	000 0000000	000

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} \cdots x_{0}x_{i} \cdots x_{0}x_{n} \\ \vdots & \ddots & \vdots \\ x_{i}x_{0} & x_{i}x_{i} & x_{i}x_{n} \\ \vdots & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

• The first row is x

Introduction to LS/LS+

University of Washington

э

<ロ> <同> <同> < 回> < 回>

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} & \cdots & x_{0}x_{i} & \cdots & x_{0}x_{n} \\ \vdots & \ddots & & \vdots \\ x_{i}x_{0} & & x_{i}x_{i} & & x_{i}x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

• The first row is x

• The diagonal is
$$x (x_i^2 = x_i)$$

イロト イポト イヨト イヨト

э

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} & \cdots & x_{0}x_{i} & \cdots & x_{0}x_{n} \\ \vdots & \ddots & & \vdots \\ x_{i}x_{0} & & x_{i}x_{i} & & x_{i}x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

LS

0000

• The first row is x

LS+

• The diagonal is $x (x_i^2 = x_i)$

(日) (同) (三) (三)

• Symmetric $(x_i x_j = x_j x_i)$

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} & \cdots & x_{0}x_{i} & \cdots & x_{0}x_{n} \\ \vdots & \ddots & & \vdots \\ x_{i}x_{0} & & x_{i}x_{i} & & x_{i}x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

LS

0000

• The first row is x

LS+

- The diagonal is $x (x_i^2 = x_i)$
- Symmetric $(x_i x_j = x_j x_i)$
- Each row is in $K(x_i \cdot x)$

・ロト ・同ト ・ヨト ・ヨト

Proof

$$Y = xx^{T} = \begin{pmatrix} x_{0}x_{0} & \cdots & x_{0}x_{i} & \cdots & x_{0}x_{n} \\ \vdots & \ddots & & \vdots \\ x_{i}x_{0} & & x_{i}x_{i} & & x_{i}x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n}x_{0} & \cdots & x_{n}x_{i} & \cdots & x_{n}x_{n} \end{pmatrix}$$

LS

0000

• The first row is x

LS+

- The diagonal is $x (x_i^2 = x_i)$
- Symmetric $(x_i x_j = x_j x_i)$
- Each row is in $K(x_i \cdot x)$

- 4 同 6 4 日 6 4 日 6

•
$$Y_0 - Y_i$$
 is in K
 $((1 - x_i) \cdot x)$.

University of Washington

-

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00

Strength of Cuts

Theorem

n rounds of *LS* give the convex hull of 0-1 solutions (i.e. $K^0 = N^n(K)$).

Introduction to LS/LS+

University of Washington

- A - E - N

Image: A = A

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00
Strength Result			

. . . .

Strength of Cuts

Theorem

n rounds of *LS* give the convex hull of 0-1 solutions (i.e. $K^0 = N^n(K)$).

Proof $(K^0 \subseteq N^n(K))$ From before, $K^0 \subseteq N(K) \subseteq K$.

< A > < B

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00

Strength of Cuts

Theorem

n rounds of *LS* give the convex hull of 0-1 solutions (i.e. $K^0 = N^n(K)$).

Proof $(K^0 \subseteq N^n(K))$

From before, $K^0 \subseteq N(K) \subseteq K$. Hence, $K^0 \subseteq N^k(K)$ for all k.

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○●○○○○	0000000	00

Strength of Cuts

・ロト・西ト・西ト・西ト・日・ のへの

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○●○○○○	0000000	00
Strength Result			

Theorem

- $v \in H_i$ if and only if $v_i = 0$
- $v \in G_i$ if and only if $v_i = v_0$
- $F_i = H_i \cup G_i$

Then, $N(K) \subseteq \operatorname{cone}(K \cap F_i)$.

- A - E - N

◆ 同 ♪ ◆ 三 ♪

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○●○○○○	0000000	00
Strength Result			

Theorem

- $v \in H_i$ if and only if $v_i = 0$
- $v \in G_i$ if and only if $v_i = v_0$
- $F_i = H_i \cup G_i$

Then, $N(K) \subseteq \operatorname{cone}(K \cap F_i)$.

Proof

Let $x \in N(K)$, with corresponding Y. Let Y_i be the *i*th row of Y.

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○●○○○	0000000	00
Strength Result			

Proof (cont.)

(Y_{00}		<i>Y</i> _{0<i>i</i>}		Y_{0n}
	÷	••.			÷
	Y_{i0}		Y _{ii}		Yin
	÷			·	÷
	Y_{n0}		Y _{ni}		Y_{nn}

э

-∢ ≣ →

▲ 同 ▶ → ● 三

Introduction	LS	LS+	Separation Oracles
	0000	000 0000000	000

Strength of Cuts

Proof (cont.)

(Y_{00}		<i>Y</i> _{0<i>i</i>}		Y_{0n}
	÷	•••			÷
	Y_{i0}		Y _{ii}		Y _{in}
	÷			·	÷
	Y_{n0}		Y _{ni}		Y_{nn}

•
$$Y_{ii} = Y_{i0}$$
 implies $Y_i \in G_i$.

<ロ> <同> <同> < 回> < 回>

Introduction to LS/LS+

University of Washington

э

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○●○○○	0000000	00
Strength Result			

Proof (cont.)

(Y_{00}	• • •	<i>Y</i> _{0<i>i</i>}		Y_{0n}
	÷	·			÷
	Y_{i0}		Y _{ii}		Yin
	÷			·	÷
	Y_{n0}		Y _{ni}		Y_{nn}

• $Y_i \in K \cap G_i$.

< D > < P > < P >

Introduction to LS/LS+

University of Washington

э

- ∢ ⊒ →

Introduction	LS	LS+	Separation Oracles
	0000	000 0000000	000

Strength of Cuts

Proof (cont.)

(Y_{00}		<i>Y</i> _{0<i>i</i>}		Y_{0n}
	÷	·			÷
	Y_{i0}		Y _{ii}		Yin
	÷			·	÷
	Y_{n0}		Y _{ni}		Y_{nn}

- $Y_i \in K \cap G_i$.
- $(Y_0 Y_i)_i = Y_{0i} Y_{ii} = 0$ implies $(Y_0 - Y_i) \in H_i$.

(日) (同) (三) (三)

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○●○○○	0000000	00

Strength of Cuts

Proof (cont.)

Y_{0i} <u>:</u> Y_{i0} Y_{ii} Yin Y_{n0}

• $Y_i \in K \cap G_i$.

•
$$(Y_0 - Y_i) \in K \cap H_i$$
,

Introduction to LS/LS+

University of Washington

-

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○●○○	0000000	00
Strength Result			

Proof (cont.) So:

$$x = Y_0$$

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00
Strength Result			

Proof (cont.) So:

$$\begin{array}{rcl} x & = & Y_0 \\ & = & (Y_0 - Y_i) + Y_i \end{array}$$

Introduction to LS/LS+

University of Washington

э

< ロ > < 同 > < 回 > < 回 >

Introduction	LS	LS+	Separation Oracles
	000	000	000
	000	0000000	00

Strength of Cuts

Proof (cont.) So:

$$\begin{aligned} x &= Y_0 \\ &= (Y_0 - Y_i) + Y_i \\ &\in (K \cap H_i) + (K \cap G_i) \end{aligned}$$

Introduction to LS/LS+

University of Washington

э

<ロ> <同> <同> < 同> < 同>

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○●○○	0000000	00

Strength of Cuts

Proof (cont.) So:

$$\begin{array}{rcl} x & = & Y_0 \\ & = & (Y_0 - Y_i) + Y_i \\ & \in & (K \cap H_i) + (K \cap G_i) \\ & \subseteq & \operatorname{cone}(K \cap (H_i \cup G_i)) \end{array}$$

Introduction to LS/LS+

University of Washington

э

< ロ > < 同 > < 回 > < 回 >

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○●○○	0000000	00

Strength of Cuts

Proof (cont.) So:

$$x = Y_0$$

= $(Y_0 - Y_i) + Y_i$
 $\in (K \cap H_i) + (K \cap G_i)$
 $\subseteq \operatorname{cone}(K \cap (H_i \cup G_i))$
= $\operatorname{cone}(K \cap F_i)$

э

<ロ> <同> <同> < 同> < 同>

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○○●○	0000000	00

Example

University of Washington

э

<ロ> <同> <同> < 回> < 回>

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○○●○	0000000	00

Example

University of Washington

э

<ロ> <同> <同> < 回> < 回>

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00

Example

≣ ▶ ∢ ≣ ▶ ा≣ ∽ ९ ० University of Washington

< ロ > < 同 > < 回 > < 回 >

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00

Example

University of Washington

- ∢ ⊒ →

A B > A B >

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○○●○	0000000	00

Example

University of Washington

э

<ロ> <同> <同> < 回> < 回>

Introduction	LS	LS+	Separation Oracles
	○○○○	000	000
	○○○○●	0000000	00
Strength Result			

Conclusion

In terms of cones:

$$N^{t}(K) = N(N^{t-1}(K)) \subseteq \operatorname{cone}(N^{t-1}(K) \cap F_{t})$$

Introduction to LS/LS+

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS ○○○○ ○○○○○●	LS+ 000 0000000	Separation Oracles
Strength Recult			

Conclusion

In terms of cones:

$$N^{t}(K) = N(N^{t-1}(K)) \subseteq \operatorname{cone}(N^{t-1}(K) \cap F_{t})$$

Since $\cap_1^n F_t$ is the vertices of hypercube, $N^n(K) \subseteq K^0$.

- 4 同 2 4 日 2 4 日 2

Introduction	LS 0000 000000	LS+ ••• ••••••	Separation Oracles
Introduction			

LS+

 $\mathsf{LS+}$ strengthens an LP in the same way as $\mathsf{LS},$ also adds squares of linear terms.

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	0000	○●○	000
	000000	○○○○○○○	00
Introduction			

Let $x \in N_+(K)$ if and only if there is a matrix Y such that:

- The first column of Y is x
- The diagonal of Y is x
- Y is symmetric $Y_{ij} = Y_{ji}$
- All the rows of Y are in K
- For all i, $Y_0 Y_i$ is in K
- Y is positive semidefinite.

Introduction	LS	LS+	Separation Oracles
	0000	○○●	000
	000000	○○○○○○○○	00
Introduction			

Recall: Y positive semidefinite means: $v^T Y v \ge 0$ for all v.

Introduction to LS/LS+

Recall: Y positive semidefinite means: $v^T Y v \ge 0$ for all v. Let A, B be positive semidefinite matrices.

• $v^T(cA)v = c(v^TAv) \ge 0$, so cA is positive semidefinite.

-

- 4 回 2 - 4 □ 2 - 4 □

Recall: Y positive semidefinite means: $v^T Y v \ge 0$ for all v. Let A, B be positive semidefinite matrices.

- $v^T(cA)v = c(v^TAv) \ge 0$, so cA is positive semidefinite.
- v(A+B)v = v^TAv + v^TBv ≥ 0, so A + B is positive semidefinite.

(人間) (人) (人) (人) (人) (人)

Recall: Y positive semidefinite means: $v^T Y v \ge 0$ for all v. Let A, B be positive semidefinite matrices.

- $v^T(cA)v = c(v^TAv) \ge 0$, so cA is positive semidefinite.
- v(A + B)v = v^TAv + v^TBv ≥ 0, so A + B is positive semidefinite.

 $N_+(K)$ is a convex cone.

(人間) (人) (人) (人) (人) (人)

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	000000	00
Semi Definite Programming			

SDP

A semi-definite program is of the form:

 $\begin{array}{rcl} \min C \circ Y & \text{s.t.} \\ A_1 \circ Y &=& b_1 \\ &\vdots \\ A_m \circ Y &=& b_m \\ Y \succeq 0 \end{array}$

Where C, A_1, \ldots, A_m are symmetric matrices, and b_1, \ldots, b_m are scalars.

University of Washington

-

・ロン ・四 と ・ ヨ と ・ 日 と

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	000000	00

Semi Definite Programming

Vertex Cover

LP:

$$egin{aligned} x_i + x_j - 1 &\geq 0 & ext{ for all } (i,j) \in E \ 0 &\leq x_i \leq 1 & ext{ for all } i. \end{aligned}$$

Introduction to LS/LS+

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS 0000 000000	LS+ ○○○ ○○●○○○○	Separation Oracles
Cardi Dafinita Daramina			

By applying LS lift rules:

$$(1-x_i)(1-x_j) \ge 0 \text{ for all } i, j.$$

э

イロト イポト イヨト イヨト

Introduction	LS	LS+	Separation Oracles
	0000	○○○	000
	000000	○○●○○○○	00
Semi Definite Programming			

By applying LS lift rules:

$$(1 - x_i)(1 - x_j) \ge 0$$
 for all i, j .
Since $x_i^2 = x_i$
 $0 \le (1 - x_i)(x_i + x_i - 1)$

$$J \leq (1-x_i)(x_i+x_j-1)$$

= $(1-x_i)(x_j-1)$ for all $(i,j) \in E$.

University of Washington

э

<ロ> <同> <同> < 同> < 同>

Introduction	LS	LS+	Separation Oracles
	0000	○○○	000
	000000	○○●○○○○	00
Semi Definite Programming			

By applying LS lift rules:

$$(1 - x_i)(1 - x_j) \ge 0$$
 for all i, j .
Since $x_i^2 = x_i$
 $0 \le (1 - x_i)(x_i + x_j - 1)$
 $= (1 - x_i)(x_j - 1)$ for all $(i, j) \in E$

Or equivalently

$$(1-x_i)(1-x_j) \leq 0$$
 for all $(i,j) \in E$.

University of Washington

э

<ロ> <同> <同> < 同> < 同>

Introduction	LS	LS+	Separation Oracles
	0000 000000	000 000000	000

Semi Definite Programming

Vertex Cover

Let $x_0 = 1$.

$$\min \sum_{i \in V} (x_0 x_i)$$

$$(x_0 - x_i)(x_0 - x_j) = 0$$
 for all $(i, j) \in E$
 $(x_0 - x_i)(x_0 - x_j) \ge 0$ for all i, j .

Introduction to LS/LS+

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS	LS+	Separation Oracles
	0000	000	000
	000000	0000000	00
Semi Definite Programming			

Let $Y = U^T U$ be LS+ lifted matrix. Let the columns of Y be (u_0, \ldots, u_n) .

▲御▶ ▲理▶ ▲理≯

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	0000	○○○	000
	000000	○○○○●○○	00
Semi Definite Programming			

Let $Y = U^T U$ be LS+ lifted matrix. Let the columns of Y be (u_0, \ldots, u_n) . Then:

$$\min\sum_{i\in V}u_0\cdot u_i$$

$$\begin{aligned} (u_0-u_i)\cdot(u_0-u_j) &= 0 & \text{ for all } (i,j) \in E \\ (u_0-u_i)\cdot(u_0-u_j) &\geq 0 & \text{ for all } i,j. \end{aligned}$$

University of Washington

→ □ → → 三 → → 三 →

Introduction	LS 0000 000000	LS+ ○○○ ○○○○○●○	Separation Oracles 000 00
Semi Definite Programming			

Let $v_i = 2u_i - u_0$.

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	0000	○○○	000
	000000	○○○○○●○	00

Semi Definite Programming

Vertex Cover

Let
$$v_i = 2u_i - u_0$$
.

$$||v_i||^2 = v_i \cdot v_i$$

= $4u_i \cdot u_i - 4u_i \cdot u_0 + u_0 \cdot u_0$
= $||u_0||^2 = 1$

Introduction to LS/LS+

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS	LS+	Separation Oracles
	0000	000 000000●	000 00

Semi Definite Programming

Vertex Cover

SDP

$$\min\sum_{i\in V}\frac{1+v_0\cdot v_i}{2}$$

$$egin{aligned} & (v_0-v_i)\cdot(v_0-v_j)=0 & ext{ for all } & ij\in E \ & (v_0-v_i)\cdot(v_0-v_j)\geq 0 & ext{ for all } & i\in V \ & ||v_i||=1 & ext{ for all } & i\in V. \end{aligned}$$

University of Washington

э

イロト イポト イヨト イヨト

Introduction	LS	LS+	Separation Oracles
	0000	000	●○○
	000000	0000000	○○
Introduction			

Separation Oracles

Definition strong separation oracle - given a point x, returns that $x \in K$, or gives a separating hyperplane.

- A - E - N

< 🗇 🕨 < 🖻 🕨

Ellipsoid Method for N(K)

コントロント 山田 シュール ション しょうしょう

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	0000	000 0000000	

Ellipsoid Method for N(K)

< □ > < □ > - ∢ ⊒ →

Introduction to LS/LS+

Ellipsoid Method for N(K)

LS

LS+

000 0000000

ロマ・山マ・山マ・山、

Introduction to LS/LS+

Introduction	LS	LS+	Separation Oracles
	0000 000000	000 0000000	000

Ellipsoid Method for N(K)

Volume of ellipse decreases by $2^{\frac{1}{2n+2}}$.

Introduction to LS/LS+

Ellipsoid Method for $N_+(K)$?

 $N_+(K)$ not necessarily polyhedral.

Introduction to LS/LS+

Ellipsoid Method for $N_+(K)$?

$N_+(K)$ not necessarily polyhedral.

Definition

weak separation oracle - given a point x and $\epsilon > 0$, returns that $dist(x, K) < \epsilon$ or returns a separating hyperplane h such that $dist(h, K^{\perp}) < \epsilon$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	LS	LS+	Separation Oracles
	0000	000	०००
	000000	0000000	●०
Separation Problem			

Theorem

Given a weak separation oracle for K, we can solve the weak separation problem for $N_+(K)$ in polynomial time.

Introduction	LS	LS+	Separation Oracles
	0000	000	०००
	000000	0000000	●०
Separation Problem			

Theorem

Given a weak separation oracle for K, we can solve the weak separation problem for $N_+(K)$ in polynomial time.

Proof

Can solve for space of Y matrices.

Theorem

Given a weak separation oracle for K, we can solve the weak separation problem for $N_+(K)$ in polynomial time.

Proof

Can solve for space of Y matrices.

First row, diagonal, and symmetry conditions can be checked trivially.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Given a weak separation oracle for K, we can solve the weak separation problem for $N_+(K)$ in polynomial time.

Proof

Can solve for space of Y matrices.

First row, diagonal, and symmetry conditions can be checked trivially.

Positive semi-definitiveness checked by Gaussian elimination.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Separation Problem

Theorem

Given a weak separation oracle for K, we can solve the weak separation problem for $N_+(K)$ in polynomial time.

Proof

Can solve for space of Y matrices.

First row, diagonal, and symmetry conditions can be checked trivially.

Positive semi-definitiveness checked by Gaussian elimination. Both row conditions given by separation oracle.

< 同 > < 回 > < 回 >

Introduction	LS	LS+	Separation Oracles
	0000	000 0000000	000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction to LS/LS+