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Cutting Planes Methods

Given a 0-1 integer program:

• Consider feasibility instead of optimization.

• Relax given integer linear program and consider polytope
satisfying constraints.

• Transform through “cuts” to integral hull of valid solutions.
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Review

Cone Formulation of LS

A cone K is a subset of Rn where x ∈ K if and only if cx ∈ K for
any constant c ≥ 0.

Definition
K is the cone of feasible points given by the linear program.

Goal:
Determine if the set of integer points in K is nonempty.
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Review

Cone Formulation of LS

Definition
x ∈ N(K ) if and only if there is a matrix Y such that:

• The first row of Y is x .

• The diagonal of Y is x (corresponds to x2
i = xi ).

• Y is symmetric (Yij = Yji corresponds to xixj = xjxi ).

• All rows of Y are in K (corresponds to multiplying by xi ).

• All Y0 − Yi are in K (corresponds to multiplying by 1− xi ).

Goal:
Show that N(K ) is stronger than K .
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Review

Validity of Cuts

Theorem
If K 0 is convex hull of 0-1 vectors in K, then K 0 ⊆ N(K ) ⊆ K.

Proof
Trivially, N(K ) ⊆ K .
If x is a 0-1 vector in K 0, the matrix Y = xxT satisfies all
necessary constraints.
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Review

Proof

Y = xxT =
x0x0 · · · x0xi · · · x0xn

...
. . .

...
xix0 xixi xixn

...
. . .

...
xnx0 · · · xnxi · · · xnxn



• The first row is x

• The diagonal is x (x2
i = xi )

• Symmetric (xixj = xjxi )

• Each row is in K (xi · x)

• Y0 − Yi is in K
((1− xi ) · x).
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Strength Result

Strength of Cuts

Theorem
n rounds of LS give the convex hull of 0-1 solutions (i.e.
K 0 = Nn(K )).

Proof (K 0 ⊆ Nn(K ))

From before, K 0 ⊆ N(K ) ⊆ K .
Hence, K 0 ⊆ Nk(K ) for all k.
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Strength Result

Strength of Cuts

Theorem

• v ∈ Hi if and only if vi = 0

• v ∈ Gi if and only if vi = v0

• Fi = Hi ∪ Gi

Then, N(K ) ⊆ cone(K ∩ Fi ).

Proof
Let x ∈ N(K ), with corresponding Y .
Let Yi be the ith row of Y .
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Strength Result

Strength of Cuts

Proof (cont.)


Y00 · · · Y0i · · · Y0n
...

. . .
...

Yi0 Yii Yin
...

. . .
...

Yn0 · · · Yni · · · Ynn



• Yii = Yi0 implies Yi ∈ Gi .

• Yi ∈ K ∩ Gi .

• (Y0 − Yi )i = Y0i − Yii = 0
implies (Y0 − Yi ) ∈ Hi .

• (Y0 − Yi ) ∈ K ∩ Hi ,

Introduction to LS/LS+ University of Washington



Introduction LS LS+ Separation Oracles

Strength Result

Strength of Cuts

Proof (cont.)


Y00 · · · Y0i · · · Y0n
...

. . .
...

Yi0 Yii Yin
...

. . .
...

Yn0 · · · Yni · · · Ynn



• Yii = Yi0 implies Yi ∈ Gi .

• Yi ∈ K ∩ Gi .

• (Y0 − Yi )i = Y0i − Yii = 0
implies (Y0 − Yi ) ∈ Hi .

• (Y0 − Yi ) ∈ K ∩ Hi ,

Introduction to LS/LS+ University of Washington



Introduction LS LS+ Separation Oracles

Strength Result

Strength of Cuts

Proof (cont.)


Y00 · · · Y0i · · · Y0n
...

. . .
...

Yi0 Yii Yin
...

. . .
...

Yn0 · · · Yni · · · Ynn



• Yii = Yi0 implies Yi ∈ Gi .

• Yi ∈ K ∩ Gi .

• (Y0 − Yi )i = Y0i − Yii = 0
implies (Y0 − Yi ) ∈ Hi .

• (Y0 − Yi ) ∈ K ∩ Hi ,

Introduction to LS/LS+ University of Washington



Introduction LS LS+ Separation Oracles

Strength Result

Strength of Cuts

Proof (cont.)


Y00 · · · Y0i · · · Y0n
...

. . .
...

Yi0 Yii Yin
...

. . .
...

Yn0 · · · Yni · · · Ynn



• Yii = Yi0 implies Yi ∈ Gi .

• Yi ∈ K ∩ Gi .

• (Y0 − Yi )i = Y0i − Yii = 0
implies (Y0 − Yi ) ∈ Hi .

• (Y0 − Yi ) ∈ K ∩ Hi ,

Introduction to LS/LS+ University of Washington



Introduction LS LS+ Separation Oracles

Strength Result

Strength of Cuts

Proof (cont.)


Y00 · · · Y0i · · · Y0n
...

. . .
...

Yi0 Yii Yin
...

. . .
...

Yn0 · · · Yni · · · Ynn



• Yii = Yi0 implies Yi ∈ Gi .

• Yi ∈ K ∩ Gi .

• (Y0 − Yi )i = Y0i − Yii = 0
implies (Y0 − Yi ) ∈ Hi .

• (Y0 − Yi ) ∈ K ∩ Hi ,

Introduction to LS/LS+ University of Washington



Introduction LS LS+ Separation Oracles

Strength Result

Strength of Cuts

Proof (cont.)

So:

x = Y0

= (Y0 − Yi ) + Yi

∈ (K ∩ Hi ) + (K ∩ Gi )

⊆ cone(K ∩ (Hi ∪ Gi ))

= cone(K ∩ Fi )
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Strength Result

Example
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Strength Result

Conclusion

In terms of cones:

Nt(K ) = N(Nt−1(K )) ⊆ cone(Nt−1(K ) ∩ Ft)

Since ∩n
1Ft is the vertices of hypercube,

Nn(K ) ⊆ K 0.
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Introduction

LS+

LS+ strengthens an LP in the same way as LS,
also adds squares of linear terms.
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Introduction

Cone Formulation of LS+

Let x ∈ N+(K ) if and only if there is a matrix Y such that:

• The first column of Y is x

• The diagonal of Y is x

• Y is symmetric Yij = Yji

• All the rows of Y are in K

• For all i , Y0 − Yi is in K

• Y is positive semidefinite.
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Introduction

Cone Formulation of LS+

Recall: Y positive semidefinite means: vTYv ≥ 0 for all v .

Let A, B be positive semidefinite matrices.

• vT (cA)v = c(vTAv) ≥ 0, so cA is positive semidefinite.

• v(A + B)v = vTAv + vTBv ≥ 0, so A + B is positive
semidefinite.

N+(K ) is a convex cone.
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Semi Definite Programming

SDP

A semi-definite program is of the form:

min C ◦ Y s.t.

A1 ◦ Y = b1

...

Am ◦ Y = bm

Y � 0

Where C ,A1, . . . ,Am are symmetric matrices, and b1, . . . , bm are
scalars.
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Semi Definite Programming

Vertex Cover

LP:

min
∑
i∈V

xi

xi + xj − 1 ≥ 0 for all (i , j) ∈ E

0 ≤ xi ≤ 1 for all i .
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Semi Definite Programming

Vertex Cover

By applying LS lift rules:

(1− xi )(1− xj) ≥ 0 for all i , j .

Since x2
i = xi

0 ≤ (1− xi )(xi + xj − 1)

= (1− xi )(xj − 1) for all (i , j) ∈ E .

Or equivalently

(1− xi )(1− xj) ≤ 0 for all (i , j) ∈ E .
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Semi Definite Programming

Vertex Cover

Let x0 = 1.

min
∑
i∈V

(x0xi )

(x0 − xi )(x0 − xj) = 0 for all (i , j) ∈ E

(x0 − xi )(x0 − xj) ≥ 0 for all i , j .
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Semi Definite Programming

Vertex Cover

Let Y = UTU be LS+ lifted matrix.
Let the columns of Y be (u0, . . . , un).

Then:

min
∑
i∈V

u0 · ui

(u0 − ui ) · (u0 − uj) = 0 for all (i , j) ∈ E

(u0 − ui ) · (u0 − uj) ≥ 0 for all i , j .
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Vertex Cover

Let Y = UTU be LS+ lifted matrix.
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Semi Definite Programming

Vertex Cover

Let vi = 2ui − u0.

||vi ||2 = vi · vi

= 4ui · ui − 4ui · u0 + u0 · u0

= ||u0||2 = 1
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Semi Definite Programming

Vertex Cover

SDP

min
∑
i∈V

1 + v0 · vi

2

(v0 − vi ) · (v0 − vj) = 0 for all ij ∈ E

(v0 − vi ) · (v0 − vj) ≥ 0 for all i ∈ V

||vi || = 1 for all i ∈ V .
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Introduction

Separation Oracles

Definition
strong separation oracle - given a point x , returns that x ∈ K , or
gives a separating hyperplane.
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Introduction

Ellipsoid Method for N(K )
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Introduction

Ellipsoid Method for N(K )

Volume of ellipse decreases by 2
1

2n+2 .
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Introduction

Ellipsoid Method for N+(K )?

N+(K ) not necessarily polyhedral.

Definition
weak separation oracle - given a point x and ε > 0, returns that
dist(x ,K ) < ε or returns a separating hyperplane h such that
dist(h,K⊥) < ε.
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Separation Problem

Separation Problem

Theorem
Given a weak separation oracle for K , we can solve the weak
separation problem for N+(K ) in polynomial time.

Proof
Can solve for space of Y matrices.
First row, diagonal, and symmetry conditions can be checked
trivially.
Positive semi-definitiveness checked by Gaussian elimination.
Both row conditions given by separation oracle.
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Separation Problem
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