
© Larry Snyder, 2012-2015

Lab Exercise 3: Practice with Processing

Goal:	
 	

The objective is to practice using the Processing language, and to learn the difference
between a static program and a dynamic program. Hint: Static Processing code runs, and
then stops. Dynamic Processing code keeps running. That makes it a lot more fun.

Step	
 1	
 Color	
 The	
 Bot	

Grab the RF robot program (as Reas and Fry gave it in their book) from the CSE120
Class Calendar for this lab. Copy/Paste the code into a Processing window, and run it.
The image you will see looks like figure (a). The first task is to make the robot more
interesting by coloring it, like we did in class. One example is image (b).

 (a) (b)

As shown in class, to color a robot part, you must (a) find the component in the program,
(b) find a color using the color selector [Tools > Color Selector], (c) transfer the three
RGB color numbers to the fill() function just ahead of the component, and (d) try
the program out to see that it is good. If it is not, this is the time to fix it!

You are required to color the gray parts of the robot to complete this step. You are
welcome to add more color, but there is also more to do in this lab.

Step	
 2,	
 Make	
 The	
 Bot	
 Program	
 Dynamic	

The program you have written so far is static. That is, the Processing code runs, draws
your beautiful robot, and quits. The Processing “engine,” which is what we are calling the
software that runs your program, goes to sleep.

CSE120: Computer Science: Principles

© Larry Snyder, 2012-2015

We want it to be active, that is, to keep running, so we add a few more commands. Then
in the final step (below) we will make the robot move. But, we need to make the program
dynamic first. Notice the two programs below. The one on the left is the static robot, the
one on the right is the dynamic version. Make the highlighted modifications.
Caution: Notice that both parentheses () and braces {} are used in these changes.

The new code groups the instructions for the robot into two functions, so they can run
separately, the setup() function and the draw() functions.

Tip: In programming, functions are written with a pair of parentheses after the name, f().

The setup() function runs once, when the Processing engine starts. It defines things like
the size() of the canvas and other things that must be known at the start. Our setup()
has four instructions. After the setup() runs, then the draw() function runs over and
over again. This redraws the image. If we have made no changes to the image, it looks
like it did before. It looks static, but is really dynamic and unchanging. (We’ll make
changes in a moment.) The following diagram shows what is happening when the
Processing engine runs a dynamic program.

size(720, 480);
smooth();
strokeWeight(2);
ellipseMode(RADIUS);

//Neck
stroke(102); // Set stroke to gray
line(266, 257, 266, 162); // Left
line(276, 257, 276, 162); // Middle
line(286, 257, 286, 162); // Right

// Antennae
line(276, 155, 246, 112); // Small
line(276, 155, 306, 56); // Tall
line(276, 155, 342, 170); // Medium

// Body
noStroke(); // Disable stroke
fill(102); // Set to gray
ellipse(264, 377, 33, 33);// Antigravity Orb
fill(0); // Set to black
rect(219, 257, 90, 120); // Main body
fill(102); // Set medium gray
rect(219, 274, 90, 6); // Gray stripe

// Head
fill(0); // Set to black
ellipse(276, 155, 45, 45);// Head
fill(255); // Set to white
ellipse(288, 150, 14, 14);// Large eye
fill(0); // Set to black
ellipse(288, 150, 3, 3); // Pupil
fill(153); // Set to gray
ellipse(263, 148, 5, 5); // Small eye 1
ellipse(296, 130, 4, 4); // Small eye 2
ellipse(305, 162, 3, 3); // Small eye 3

void setup () {
 size(720, 480);
 smooth();
 strokeWeight(2);
 ellipseMode(RADIUS);
}

void draw () {

 //Neck
 stroke(102); // Set stroke to gray
 line(116, 207, 116, 112); // Left
 line(126, 207, 126, 112); // Middle
 line(136, 207, 136, 112); // Right

 // Antennae
 line(126, 105, 96, 62); // Small
 line(126, 105, 156, 6); // Tall
 line(126, 105, 192, 120); // Medium

 // Body
 noStroke(); // Disable stroke
 fill(102); // Set to gray
 ellipse(114, 327, 33, 33);// Antigravity Orb
 fill(0); // Set to black
 rect(69, 207, 90, 120); // Main body
 fill(102); // Set back to gray
 rect(69, 224, 90, 6); // Gray stripe

 // Head
 fill(0); // Set to black
 ellipse(126, 105, 45, 45);// Head
 fill(255); // Set to white
 ellipse(138, 100, 14, 14);// Large eye
 fill(0); // Set to black
 ellipse(138, 100, 3, 3); // Pupil
 fill(102); // Set to gray
 ellipse(113, 90, 5, 5); // Small eye 1
 ellipse(146, 80, 4, 4); // Small eye 2
 ellipse(155, 112, 3, 3); // Small eye 3
}

© Larry Snyder, 2012-2015

The way to read this diagram is that the Processing engine starts running setup(),
finishes it, starts running draw(), finishes that, and then “goes around, and runs draw()
again, again and again … .”

Step	
 3,	
 Move	
 the	
 Robot	

This is more fun! Add two more instructions to your dynamic program:

The instructions go inside of draw() – that is, after the line that starts the draw()
function – and before the //Neck comment (see blue arrow in program above).
Caution: Notice that “mouse” is written in lower case letters, and the X and Y are
capitals; this is required. Run your program and move your mouse. You will see the
robot move around the screen under mouse control. The cursor (arrow) is at the upper left
of the figure because the figure is drawn with reference to that point, i.e. that is an
imaginary point (0,0).

Challenge	

Remove the background(205); line from your program, and run it again. Can you
explain what is happening, and why it is different with/without the background()
function? Hint: Check the diagram above.

Wrap	
 Up	

You have colored the RF robot, learned the difference between static and dynamic
programs, written a dynamic program, and made the robot follow your cursor.

Turn-­‐In	

Restore the background() function.
Prepare a (Word) document with the following content: (a) Your explanation of the
Challenge question above, and (b) your active colored robot program text. Turn them in
in the class dropbox.

run	
 setup()

run	
 draw()

 background(205); //Draw background
 translate(mouseX,mouseY); //Draw robot where mouse is

