Parameters And Arguments

Lawrence Snyder
University of Washington, Seattle

Form of Functions In Processing ...

We saw functions in Lightbot and in Moonwalk
... how do they look in Processing?

Recall these components of the function
declaration

void littleRedBox() {
F111(255,0,0);
rect(100,100,5,5);

}

1/16/15 © 2013-2015 Larry Snyder 2

Form of Functions In Processing ...

We saw functions in Lightbot and in Moonwalk
... how do they look in Processing?
Recall these components of the function

declaration |Name starts with letter,
uses letters, numbers

underscore; doesn’t
collide //

void littleRedBox() {
F111(255,0,0);
rect(100,100,5,5);

}

1/16/15 © 2013-2015 Larry Snyder 3

Form of Functions In Processing ...

We saw functions in Lightbot and in Moonwalk
... how do they look in Processing?
Recall these components of the function

declaration |Name starts will letter,
uses letters, numbers

Function’s return type — | | ynderscore: doesn’t
Use ‘void’ if none collide //
voild littleRedBox() {

f'il-.(255,®,®) ;

rect(100,100,5,5);

}

1/16/15 © 2013-2015 Larry Snyder 4

Form of Functions In Processing ...

We saw functions in Lightbot and in Moonwalk
... how do they look in Processing?
Recall these components of the function

declaration |Name starts will letter,
uses letters, numbers

Function’s return type — | | ynderscore: doesn’t
Use ‘void’ if none collide

voild littleRedBox() {
fil11(255,0,0);
rect(lOO,l@O,S,S);

}

1/16/15 © 2013-2015 Larry Snyder 5

Form of Functions In Processing ...

We saw functions in Lightbot and in Moonwalk
... how do they look in Processing?
Recall these components of the function

declaration |Name starts will letter,
uses letters, numbers

Function’s return type — | | ynderscore: doesn’t
Use ‘void’ if none collide

voild TlittleRedBox() {
The definiion | £977 (255,0,0) ;

iImplements

the function rect(lOG),lG)G),5,5) ;
}

1/16/15 © 2013-2015 Larry Snyder 6

Relating To Earlier Functions

In the Lightbot functions (Assignment 3) we
used the form

F.turn_around() Right, Right.

IF we did something like this in Processing, it
would look different but have the same parts

No void needed | | Name | | Works like {J Definition L_Works like }

-.turn_around() Right, Right .

1/16/15 © 2013-2015 Larry Snyder 7

An Example Of The Parts

Find the <type>, <name>, parameter parens,

the braces enclosing the def, and the definition
voild raff() {
fi11(0,100,0);
rect (240 ,260, 40, 45);
£i11(219,136,0) ; .
rect(240 ,210, 40, 50);
fi11(0,100,0);
rect (240 ,190, 40, 20);
fi11(255,0,0); .
rect(240 , 184, 40, 6);
fi11(0,100,0);

rect(240 , 169, 40, 15);
}

1/16/15 © 2013-2015 Larry Snyder 8

Might As Well Memorize the 5

All functions have these parts in one form or
another:

Return Type — not always applicable

Name

Parentheses (even if there are no parameters)
Enclosing braces (or other symbols)

Definition — normal statements of the language

1/16/15 © 2013-2015 Larry Snyder 9

Return Types

What is a return type?

Unwanted font.

—

——

SERRRRS

1/16/15 © 2013-2015 Larry Snyder 10

Return Types

What does ®turn type mean?

Unwanted fe

- T

(

1/16/15 © 2013-2015 Larry Snyder 11

Return Types

A return type is the kind of value a function

computes
So, it will be one of the data types, e.g. int or float

If the function doesn’t return anything, use void

float areaFromCorner() {
return mousex * mouseyY,

}

int randomEvenNumberlLT20 () {
return 2 *x int(random(0, 10));

¥
voild change2red () {

fi11(255,0,0);

1/16/15 © 2013-2015 Larry Snyder 12

Parameters

Parameters are the information that go inside
of the parentheses —

O

void whiteBox5x5 (int xPos, int yPos) {
fi11(255,255,255) ;
rect(xPos, yPos, 5, 5);

}

Notice:
The datatype of the parameter must be given
Parameters are separated by commas
Parameter names like other names — no conflicts

1/16/15 © 2013-2015 Larry Snyder 13

Functions With Parameters

Parameters give the data for the function to
operate on ... then to do the same operation on
different data just change the values they get

Input to the function: x position, y position and color of box

void tile(int xPos, int yPos, color tinto) {
£fill(tinto) ; //set box color
rect (xPos, yPos, 5, 5); //draw small box
}

Notice:

(@) We always give a name to the data, e.q. xPos

(b) We always say what type the datais, e.g. int

(c) The order, which we choose, will always have to be followed

1/16/15 © 2013-2015 Larry Snyder 14

The Function Call

Writing out how the function works is called its
definition ... write it just once
To use the function, we call it by giving the data

to be used when it runs ... use it repeatedly
tile (10, 20, color(255,0,0)); //red tile
tile (30, 30, color(0,0,255)); //blue tile

Notice: ® O O sketc...
(@) The data we give are called arguments
(b) Only use values of the right type
(c) Order of arguments must match o
order of the parameters they go with

1/16/15 © 2013-2015 Larry Snyder 15

Parameter/Argument Summary

Define functions just once

void tile(int xPos, int yPos, color tinto) {
£fill(tinto); //set box color
rect (xPos, yPos, 5, 5); //draw small box

)
Use parameters for all values that will change

Call function when needed & give arguments

tile (10, 20, color(255,0,0)); //red tile 8.0.8.sketc,
tile (30, 30, color(0,0,255)); //blue tile

A call is as if values used directly

1Q 20 color,(255,0,0)

void tile(-) |
£ill (color (255,0,0)) ; //set box color
rect (10, 20, 5, 5); //draw small box

}

1/16/15 © 2013-2015 Larry Snyder 16

Pause To Consider Abstraction ...

Recall yesterday’s lab
Task: Make four column
UW logo

rect(0,0,60,20);
rect(10,20,40,10);
ellipse(10,25,10,10);

+100 +2 00 +300

You were asked to make the

ellipse(50,25,10,10); additional columns by copying the
rect(15,30,30,60); code, and editing it to add +100 or
+200 or +300

rect(0+100,0,60,20); This request should have disgusted
rect(10+100,20,40,10); you! You probably said, “Wait, Larry,
ellipse(10+100,25,10,10); the column is an abstraction ...
ellipse(50+100,25,10,10); s#muhn%wepuﬂﬂnaﬁﬂpmxﬁ??’
rect(15+100,30,30,60) ; And, of course, you were right!

1/16/15 © 2013-2015 Larry Snyder 17

A Column Packaged As A Function

Layoutand Void draw() {

column (10, 20);
color are column(110,20);
constant; column(210,20);
pOSitiOn is column(310,20);
variable, so }

Iitis param- 44 column(int xPos, int yPos) {

eterized. rect(xPos,yPos,60,20) ;
rect(10+xPos,20+yPos,40,10);
ellipse(10+xPos,25+yPos,10,10);
ellipse(50+xPos,25+yPos,10,10);
rect(15+xPos,30+yPos,30,60);

1/16/15 Y .8

lllustrate What We Just Learned

Today, we solve a problem that is much like
Assignment 6

The demo gives a chance to discuss how to

translate the instructions of the exercise into
a solution ...

Use this exercise as a guide for Assignment 6

1/16/15 © 2013-2015 Larry Snyder 19

The Set Up

Problems of all sorts often begin as a rehash
of what is known or given

“"Here we are given a Processing
function to draw a mouse of a given >“<
color at a given place.”

What to do: Understand what is given.
In this case look at the code and notice how it
controls the color and the position.

1/16/15 © 2013-2015 Larry Snyder 20

Mouse Function

.+ vold mouse(int xpos, int ypos, color c) {
Check it -chc);
out! 10Stroke();
ell1ya“(5®+xpos 50+ypos ,50,50);
el lipse(25+xpos,30+ypos,30,30);
el lipse(754xpos,30+ypos,30,30);
llll(@),
el lipse(4@+xpos ,44+ypos, 10,10);
ellipse(6@+xpos ,44+ypos, 10,10);
stroke(@);
L L1ne(20+xpos ,50+ypos, 48+xpos,60+ypos);
i::>"<::’ L1ne(80+xpos ,50+ypos, S52+4xpos,060+ypos);
Line(25+xpos , 70+ypos, 48+xpos,60+ypos);
Line(754xpos, 70+ypos, S52+4xpos,060+ypos);
}

1/16/15 © 2013-2015 Larry Snyder 21

mouse(0,0,
color(0,200,200));

Example Task

Task statements usually give the goal, plus a
series of additional properties or conditions
that the solution should have

"Make a function to draw a row of eight mice so
that their ears overlap and all but one are the
same given color; the odd one is to be red”

What to do: Break the task down into
subtasks that are easy to do.

1/16/15 © 2013-2015 Larry Snyder 22

Example Task (continued)

“"Make a function to draw a row” means we

have to outline the structure: |void row() |

“Draw 8 mice so their }
ears overlap” means

we need X, y parameters for the position of the first

we draw a second one and try to adjust the x-
coordinate to align their ears

then we draw the rest using the same alignment
"All but one are the same given color” means
we need a parameter for the given color
"One is red” means to pick one; colorit red

1/16/15 © 2013-2015 Larry Snyder 23

0, color (100))

Mouse Row Fow o,
All of those steps produce ...

void row (int xpos, int ypos, color ¢) {
mouse(xpos+0, ypos, c);
mouse(xpos+50, ypos, c);
mouse(xpos+100, ypos, color(255,0,0));
mouse(xpos+150, ypos, C);
mouse(xpos+200, ypos, ¢);
mouse(xpos+250, ypos, C);
();
()

mouse(xpos+300, ypos, C
mouse(xpos+350, ypos, C

1/16/15 © 2013-2015 Larry Snyder 24

Another Task

“"Make a swarm of mice by drawing six rows
each of a different color”

The task leaves many things unspecified, and
in that case we will make a sensible decision
about what to do.

1/16/15 © 2013-2015 Larry Snyder 25

Another Task (continued)

“Make a swarm of mice” means we need
another function, because the concept of
swarm is different form the row we have.
Remember — functions are abstractions, each
represents a different concept! |void swarm()
}

The starting position of rows is not stated, so
like always, we add parameters for xpos, ypos
Row separation not stated, so we just pick it
Colors not stated, so we just pick some

1/16/15 © 2013-2015 Larry Snyder 26

Solution Code

void swarm (int xpos, int ypos) {
row(xpos, ypos+0, color(100,100,100));

row(xpos, ypos+100, color(255,0,255)); // pink

row(xpos, ypos+200, color(125,125,125));

row(xpos, ypos+300, color(150,150,150));

()

());

O

r

row(xpos, ypos+400, color(175,175,175
row(xpos, ypos+500, color(200,200,200

o
=

o
R
/‘\A/‘\/‘\/‘\

1/16/15 © 2013-2015 Larry Snyder 27

Solution

EPRY S TR R TRY
soeiEhe

== SIS

N OO G2 O ol

RPNy STRTRTRTRyS

> <

1/16/15 © 2013-2015 Larry Snyder 28

We worked through an exercise similar to
Assignment 6.

As we worked through it, we studied how to solve
these kinds of problems

We read carefully what was required

When we had a “largish” task, we broke it down to
several “smallish” tasks we could easily solve

When the problem didn't specify what to do, we
just make a sensible decision, which often meant
adding a parameter so we change it if needed

1/16/15 © 2013-2015 Larry Snyder 29

