Computers Are Not That Great!

Lawrence Snyder
University of Washington, Seattle

It Matters How Fast Programs Run

Computers are amazingly fast ... but that's
because we usually ask them to do really easy
stuff; they can do billions of instructions per
second (gips?) ...

So, what's a “really easy” computation? cn

Looking up in a dictionary or address book how
the letters you've typed might be completed

Recovering a losslessly compressed file
Looking in a file for a specific letter string

3/4/15 © 2011-2014 Larry Snyder, CSE 2

A Little More Work To Do

How long would it take the Census Bureau to
alphabetize the US population by first name?

Recall Exchange Sort & Bubble Sort — both are “n-

algorithms,” meaning they take cn® seconds for

some amount of time ¢ — usually the overhead to
process one item; lets estimate ¢ ~ 0.5 us

If the US population is n = 310,000,000 = 3.1 X 108
n?=3.1X10°x3.1x10%=9.6 x10%*
0.5 US =.000 000 5S=5.0 X107/S

Cn? =5.0X 1075 X 9.6 X 10%® = 48 X 1095 = 1521 years

3/4/15 © 2011-2014 Larry Snyder, CSE 3

One Other Approach

Recall there was also the Merge Sort

Merge Sort requires cn log, n
cnlog,n=5.0x1075 X 3.1x10%X 29
=15.5X 10S X 29 = 44955 = 1.24 hr

3/4/15 © 2011-2014 Larry Snyder, CSE 4

Summarizing Alphabetize Task

The input size n = 310,000,000 = 3.1 X 108
Exchange sort & Bubble sort require cn? time
For c=1/2 microsecond, cn? = 1521 years
Merge sort requires cn log, n time

Because log, n =29, cnlog2 n=1.24 hours

Algorithms matter ... and smarter algorithms
are better

3/4/15 © 2011-2014 Larry Snyder, CSE 5

Computations That Are Harder Still

More data means more work, but sometimes
it means a lot more work
Traveling salesman problem:

3/4/15 © 2011-2014 Larry Snyder, CSE 6

TSP - Visit Each City Once

Minimize the cost of the plane tickets
-inding a tour is reasonably easy
-inding the cheapest tour is NP-hard

3/4/15 © 2011-2014 Larry Snyder, CSE 7

TSP - Visit Each City Once

Minimize the cost of the plane tickets
-inding a tour is reasonably easy
-inding the cheapest tour is NP-hard

3/4/15 © 2011-2014 Larry Snyder, CSE 8

NP-Hard & NP-Complete Problems

NP, which stands for "nondeterministic
polynomial time” (don't learn that), is a class of
problems with these features:

They are easy (like cn?, perhaps) ways to solve if the
computer can guess and is always right

They have no known easy (like cn5, say) solutions, it
seems, if the computer can’t guess, which it can’t

All known solutions effectively check all possible
alternatives and pick the best

These are "normal” computations, like TSP

"Complete” means solve one and you've solved all

3/4/15 © 2011-2014 Larry Snyder, CSE 9

In Computer Science Programs ...

... Are Data

For Example: Processing is a program that
acceptsYOUR program as dataand runs it ...
so it "computes on” (processes) your program
Except for really trivial languages (e.g. HTML)
all programming lanqguages are universal — CS
neople can write a program in that one
anguage, say Processing, which can run
orograms in any other language - all programs
This is the “"Universality Principle”

3/4/15 © 2011-2014 Larry Snyder, CSE 10

A Program To Print Itself Out

String codel, code2;
void setup() {
size (500, 400);
background(255) ;
noLoop();
fill1(0); Fixing the tiny syntactic differences is easy

}
void draw() {

codel = "\'"String codel, code2; " +
"void setup() { " +
"si1ze(500,400); " +
"background(255); " +
"noLoop(); fill(e); } " +
"void draw() { " +

"codel = ;\"";

code2 = "codel = codel + codel + \'"code2 = \" + code2 + code2; " +
"text(codel, 50, 50, 200, 400); }\" ";

codel = codel + codel + '"code2 = " + code2 + code2;

text(codel, 50, 50, 200, 400);
3

3/4/15 © 2011-2014 Larry Snyder, CSE 11

Schematic of Self-Printing Pgm

Divide the program into two halves --

code1 = -

code2 = |

display: [N TN W W

3/4/15 © 2011-2014 Larry Snyder, CSE 12

Running the Program ...

Output Helpfully Formatted Output
“String codel, code; void setupl "String codel, codeZ; void setup
L{ SEE‘SUMDW) { size(500,400);
vackground(255); noLoop(J; background(255): noLoopl():
fill(0); i void draw() { codel = fill(0); } void draw() { codel = ;"

""String codel, code?2; void
setupl) { size(500,400);

background(255): noLoop(): String codel, codel; void setupl
fill(0); } void draw() { codel =) { 51ze(5300,400);

code? = codel = codel + backgroundi(255); noLoop();
codel + “code2 =" + code2 + fill(0); } void draw() { codel = "
codeZ; texticodel, 50,50, 200,

400); I" codel = codel + codel code? =" codel = codel +

+ "code?2 =" + code? + code?2;

text(codel, 50, 50, 200, 400): }" codel + "code2 =" + codel +

code?d; texticodel, 50,50, 200,
400); 1"

codel = codel + codel + "code?
=" 4+ code? + code?2:
texticodel, 50, 50, 200, 400); }"

3/4/15 © 2011-2014 Larry Snyder, CSE 13

Adding Additional Code

Notice that new code can be added, and the
program can still print itself out

Put the new code
void draw() { here and here

codel = "\"String codel, code2; " +
"void setup() { " +
"size(500,400); " +
"background(255); " +
"noLoop(); fill(O); } "
"void draw() { " +

"codel = ;\"";

code2 = "codel = codel + codel + \'"code2 = \" + code2 + code2; " +
"text(codel, 50, 50, 200, 400); F\" ";

codel = codel + codel + '"code2 = " + code2 + code2;

text(codel, 50, 50, 200, 400);

3

3/4/15 © 2011-2014 Larry Snyder, CSE 14

Summarizing

A self-printing program shows that programs
can manipulate program text ...
Examples of programs manipulating programs

The highlighter that “colors” your programs

The translator that converts Processing code into
machine code so a computer can run it

The code that figures out what you did wrong when
you forget a semicolon

A debugger can help you find errors in your pgm

3/4/15 © 2011-2014 Larry Snyder, CSE 15

A Problem That Can’t Be Solved

Suppose we want to determine if a Processing
program draws a red circle or not
It seems possible, perhaps ...

Analyze the code to see if it displays any circles

Check if any of the circles it draws are red

Etc.
Suppose check-pde(code)is a
Processing function that determines if a
Processing program draws a red circle (return
true) or does not draw a red circle (return false)

3/4/15 © 2011-2014 Larry Snyder, CSE 16

Assuming check-pde() works ...

String code = '"void trick()... " -:
void setup() { -

s1ze(200,200); background(255); noLoop();

im-d draw() { Analyze What Happens

trick(); //Guaranteed to get it wrong!
ks
void trick() {
1f (check-pde(code)){ //does code draw red circle?
fill(0,0,255); //check-pde says yes

} else {

fil1(255,0,0); //check-pde says no
} |
ellipse(100,100,10,10);

3

3/4/15 © 2011-2014 Larry Snyder, CSE 17

The Impact

There are simple problems that computers
cannot solve, b/c probs are not algorithmic ...
no deterministic sequence of operations can
find the answer; debugging is an example

Alan Turing’s insight in 1936
’fu =\

3/4/15 18

We considered how “hard” computations can
be, where “hard” is measured as running time
Linear time —thinking about how long the
code runs

Quadratic; NlogN —thinking about sorting
NP Hard and the TSP

Universal machine — yeah Turing!
Undecidibility

3/4/15 © 2011-2014 Larry Snyder, CSE 19

