Debugging and
Interpreting Exceptions

UW CSE 190p
Summer 2012

>>> print "foo'

foo

>>> x = "foo"
>>> print X
foo

>>2>

Review

Debugging

94 4

06w Gakom =~W - {’-\-700 7032 sy7 015
YLL ‘ sw‘}-ﬁ = anfom / , F.087 ¥YC IS covy
13vc 030 Me ~ne EFSITL Fed) #0/5 F25055(.)
£33y PRO > 2. 130420y

— - . —— ———————— e ——

Cans 2.13%06Pewrs
IS -2 =~ 033 #.;J;ru/yw .t'-
) PN 1 35, 7 S NS B D 5 T " o, o .
.J-»,.l
/9 .>.r r+-—J Co tne Sine check
’4j 25 ﬁl‘“ ted “?ull b ﬁag’er (Tl?ft ’

\Say

@‘t“‘?b ?Q ne ‘

LMo'f‘Qu\ f%\qc\

F.\ 51 actya
reF /e a..J:-,,J stadd).

Debugging Matters

o 3 A v ! ¥ V8 s Sy R r : ‘
e ¢ Bl Mg A g low current high current high current
o oA electron beam electron beam electron beam
' 2 ERUS was scanned was tracked with no target
o R i across the field at the target > 'lightning'
Ariane 5, 1996 T }
Electron Mode X-Ray Mode | THE PROBLEM

tray including the target, a flattening filter, the collimator jaws and an ion
chamber was moved OUT for "electron” mode, and IN for "photon" mode.

Therac 25, 1980s

The Way | Think About Debugging

Apologies for the mixed metaphors....

If it doesn’t work as expected, then
by definition you don’t understand
what is going on.

* You're lost in the woods.

* You’'re behind enemy lines.

* All bets are off.

* Don’t trust anyone or anything.

Don’t press on into unexplored
territory -- go back the way you
came!

(and leave breadcrumbs!)

You’re trying to “advance the front lines,” not “trailblaze”

My Favorite Time-Saving Trick: Make Sure
you’re Debugging the Right Problem

 The game is to go from “working to working”

* When something doesn’t work, STOP!
— It’s wild out there!

* FIRST: go back to the last situation that worked properly.

— Rollback your recent changes and verify that everything still works as
expected.

— Don’t make assumptions — by definition, you don’t understand the
code when something goes wrong, so you can’t trust your
assumptions.

— You may find that even what previously worked now doesn’t

— Perhaps you forgot to consider some “innocent” or unintentional
change, and now even tested code is broken

Timeline

A works, so celebrate a little

Now try B

B doesn’t work

C
C
C

nange B anc
nange B anc

nange B anc

try again
try again
try again

Timeline

A works, so celebrate a little
Now try B

B doesn’t work
Rollback to A

Does A still work?

— Yes: Find A’ that is somewhere between A and B

— No: You have unintentionally changed something else, and there’s no
point futzing with B at all!

These “innocent” and unnoticed changes happen more than you would think!
* You add a comment, and the indentation changes.

* You add a print statement, and a function is evaluated twice.
* You move a file, and the wrong one is being read

* You're on a different computer, and the library is a different version

Once you’re on solid ground
you can set out again

* Once you have something that works and
something that doesn’t work, it’s only a matter of
time

* You just need to incrementally change the
working code into the non-working code, and the
problem will reveal itself.

e Variation: Perhaps your code works with one
input, but fails with another. Incrementally
change the good input into the bad input to
expose the problem.

Scientific Method

By definition, unexpected behavior means you
don’t understand the code.

How do you learn about something you don’t
understand?

1) Form a hypothesis
2) Make a prediction
3) Test and analyze

Simple Debugging Tools

print
— shows what’s happening whether there’s a problem or not
— does not stop execution

assert
— Raises an exception if some condition is not met
— Does nothing if everything works
— Use this liberally! Not just for debugging!
raw_input
— Stops execution
— (Designed to accept user input, but | rarely use it for this.)

assert statement

assert len(rj.edges()) == 16

Traceback (most recent call last):
File "assertion.py", line 28, in <module>
assert len(rj.edges()) == 16
AssertionError

Recommendation 2:
Read the error message!

As unhelpful as they sometimes can be, they are your
best (and often only) starting point for diagnosis.

The developers went through a lot of trouble to provide
these messages — use them.

You need to master
1) the literal meaning of the error
2) the underlying problems certain errors tend to suggest

def friends of friends(graph, user):

"""Returns a set of friends of friends of the given user,
the given graph. The result does not include the user nor their

friends """
fof = set()
f = friends(graph, user)
for fren in f£:
friend = set(graph.neighbors (fren))
fof = fof | friend
g = (fof - £f) - user

return g

Mecutio -> Romeo -> Juliet

Traceback (most recent call last):
File "social network.py", line 20, in <module>
friends of friends(g, 2)

File "social network.py", line 14, in friends of friends

g = (fof - f) - user
TypeError: unsupported operand type(s) for -: 'set'

def friends of friends(graph, user):

"""Returns a set of friends of friends of the given user, in
the given graph. The result does not include the user nor their
friends """

fof = set()

f = friends (graph, user)

for fren in f£:
friend = set(graph.neighbors (fren))
fof = fof | friend

f.add ([user])

g = (fof - £)

return g

Traceback (most recent call last):
File "unhashable type.py", line 21, in <module>
friends_of friends(g, "Mercutio")
File "unhashable type.py", line 14, in friends_of friends
f.add([user])
TypeError: unhashable type: 'list'

