### CSF 326 Data Structures

CSF 326 : Dave Bacon

Priority Queues : Floyd's Algorithm, D heaps, Leftist heaps,...,

Homework 2 due Priday

# Binary Min Heaps (summary)

• insert: percolate up. O(log N) time. deleteMin: percolate down. O(log N)



d+(= by v+) d=0(by v)

= 1+2(1+2+ -+24) - 24+1 5=1+25-24+ 5=24+1

# Other Priority Queue Operations

 decreaseKev - given a pointer to an object in the vieue, reduce its priority value

Solution: change priority and 25 increaseKev Ollog M

- given a pointer to an object in the queue, increase its priority 15-7 29 Why do we need a pointer? Why not simply data value?

## More Priority Queue Operations

• Remove(objPtr)

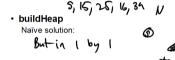
- given a pointer to an object in the queue,

remove it

Solution: set priority to negative infinity, percolate up to root and deleteMin

Worst case Running time for all of these: FindMax? (CV) ExpandHeap – when heap fills, copy into new space. (OV)

## More Priority Queue Operations



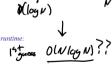
# BuildHeap: Floyd's Method

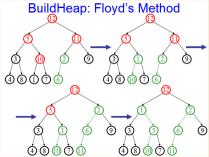


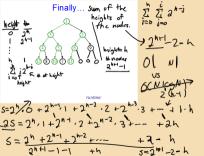


### Buildheap pseudocode

```
private void buildHeap() {
 for ( int i = currentSize/2; i > 0: i-- )
     percolateDown(i); 1
```







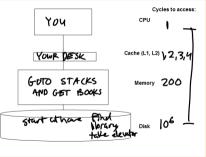
## Facts about Heaps

#### Observations:

- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each percolate step looks at only two new nodes.
   inserts are at least as common as deleteMins

#### Realities:

- division/multiplication by powers of two are equally fast
   looking at only two new pieces of data; bad for cache!
- looking at only two new pieces of data: bad for cache!
   with huge data sets, disk accesses dominate



### A Solution: d-Heaps



· Still representible by array

Good choices for d - (choose a power of two for efficiency) fit one set of children in a cache line

fit one set of children on

12 1 3 7 2 4 8 5 121110 6 9 a memory page/disk

### Operations on *d*-Heap

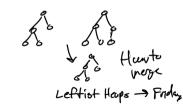
• Insert : runtime = (1094N)

• deleteMin: runtime = 0 (d log 1 N)

Does this help insert or deleteMin more?

### One More Operation

Merge two heaps. Ideas?



### Leftist Heaps

#### Idea:

Focus all heap maintenance work in one small part of the heap

#### Leftist heaps:

- 1. Most nodes are on the left
- 2. All the merging work is done on the right

### Definition: Null Path Length

null path length (npl) of a node x = the number of nodes between x and a null in its subtree

npl(x) = min distance to a descendant with 0 or 1 children

- npl(null) = -1
   npl(leaf) = 0
- npl(single-child node) = 0

#### Equivalent definitions:

npl(x) is the height of largest complete subtree rooted at x





## Leftist Heap Size

 A leftist tree with r nodes on the right path must have at least 2<sup>r</sup>-1 nodes

Inductionr=1

 Assume true for 1,..,r-1. Then leftist heap size r:

### Leftist Heap Properties

parent's priority value is < to childrens' priority</li>

- Heap-order property
  - values

     result; minimum element is at the root
- For every node x, npl(left(x)) ≥ npl(right(x))
- result: tree is at least as "heavy" on the left as the right Are leftist trees...

complete?

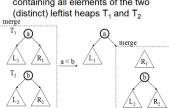
Leftist property

## Merge two <u>leftist</u> heaps (basic idea)

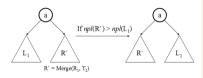
- Put the smaller root as the new root,
- Hang its left subtree on the left.
   Recursively merge its right subtree and the other tree.

## Merging Two Leftist Heaps

 merge(T<sub>1</sub>,T<sub>2</sub>) returns one leftist heap containing all elements of the two (distinct) leftist heaps T<sub>1</sub> and T<sub>2</sub>



## Leftist Merge Continued



runtime:

# Leftist Merge Example

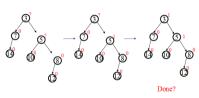




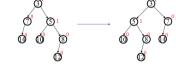


(special case)

# Sewing Up the Leftist Example



# Finally...(Leftist)



### Operations on Leftist Heaps

- merge with two trees of total size n: O(log n)
- insert with heap size n: O(log n) - pretend node is a size 1 leftist heap
  - insert by merging original heap with one node heap



- deleteMin with heap size n: O(log n)
  - remove and return root
  - merge left and right subtrees











### Random Definition: Amortized Time

am-or-tized time:

Running time limit resulting from "writing off" expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower <u>overall</u> running time than indicated by the worst possible case.

If M operations take total O(M log N) time, amortized time per operation is O(log N)

Difference from average time: