CSE 326 Data Structures

CSE 326 : Dave Bacon

Priority Queues : Floyd’s Algorithm,
D heaps, Leftist heaps, ...,

Romewort 2 due *Pn‘ah»;

Binary Min Heaps (summary)

* insert: percolate up. O(log N) time.
+ deleteMin: percolate down. O(log N)
time.

4 hf*k‘:&

[
1
taods @ 4
\ /\//(}r\t; - Qd
® Ayttt
S= |+~ +)
A=l o ol ~+24) 94
4=0gV) S=h2s ~2MH gt

Other Priority Queue Operations

+ decreaseKey
— given a pointer to an object in the@ieue, reduce its priority
value
¢
Solution: change priority and 2€ e
* increaseKey 0(10‘9 M
— given a pointer to an object in the queue, increase its priority
valu I 24

‘Why/do we need a poinfer? Why not simply data value?

Solution:,change priority and 'M(
pU! dﬂ n
Y

More Priority Queue Operations

* Remove(objPtr)

—given a pointer to an object inthe queue,
remove it

Solution: set priority to ne
percolate up to root and deleteMin

O —D -co
Worst case Runni %time for all of these:
FindMax? ow)

ExpandHeap — when heap fills, copy into
new space. Q(A)

More Priority Queue Operations

S, 1§ 15) &, 34
* buildHeap 1 / v

Naive solution: @
But—ia L by | f

Running time:
st 0(\00 v)

—>0W logN
Can we do better”
-—_

BuildHeap: Floyd’s Method

‘12|5‘11|3‘10|6‘9|4|8|1|7|2‘

‘Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property! ~

¥

Buildheap pseudocode

private void buildHeap() {
for (int i = currentSize/2; i > 0; i--)
percolateDown (i);T

Wlog 1) v
runtime. ¢

BuildHeap: Floyd’s Method
@ (®)

Finally...

sy O

o
(Ll @

Sum of He

: @\ QR | Wight= h
h @o@@@ 000 :r:“‘

2 -l
1St S
height”

PV f2N 22 S

heights of
Pe wodes.

N A EIN

W
Z:Z:a'“

=0 o

ol wl

Vs
T

34—"-\-1»1\

2s=9", \+2'”'2*1“'%)~~» Ak

= ah +2 2 oo
QrH vy +h

+3- h
5= _2-h

Facts about Heaps
Observations:
finding a child/parent index is a multiply/divide by two
operations jump widely through the heap
each percolate step looks at only two new nodé\h
Ms are at least as common as deleteMins

s S
Realities:

« division/multiplication by powers of two are equally fast
« looking at only two new pieces of data: bad for cache!
« with huge data sets, disk accesses dominate

You

Cycles to access:

CPU

[Yowk eS| Greneth2y 2,3,

GuUto STAWKS
AND GET 0oKS

Memory 200

A Solution: d-Heaps

Each node has d children
Still representible by array
Good choices for d:

— (choose a power of two 29 O
for efficiency) " |

— fit one set of children in OOOOOE

a cache line [2[1]3]7]2[4[8]5 1211106][9]
— fit one set of children on

a memory page/disk
block 0G4 W

Operations on d-Heap

* Insert : runtime %%4”)

+ deleteMin: runtime =0/<o(I%JA/X

Does this help insert or deleteMin more?

One More Operation

* Merge two heaps. Ideas?

£ /{\f
Jb\ HWV“-D
N e

LePFiot “aafs - Fﬂ“‘y

Leftist Heaps

Idea:

Focus all heap maintenance work in one
small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node x = the number of nodes between x
and anull in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children

« npi(null) = -1 @
« npl(leaf) =0
« npl(single-child node) =0 @ @

Equivalent definitions: © O, @ ©

1. npl(x) is the height of largest
complete subtree rooted at x 0JOJO,;

2. mpl(x) =1 +min {npl(lefi(x), npl(right(x)) }

Leftist Heap Size

* A leftist tree with r nodes on the right path
must have at least 2"-1 nodes

* Induction
o =1

» Assume true for 1,..,r-1. Then leftist heap
sizer:

Leftist Heap Properties
* Heap-order property

— parent’s priority value is < to childrens’ priority
values

—result: minimum element is at the root

* Leftist property
— For every node x, npl(left(x)) = npl(right(x))

—result: tree is at least as “heavy” on the left as

the ng&tre leftist trees...

complete?
balanced?

Merge two leftist heaps (basic idea)

* Put the smaller root as the new root,
* Hang its left subtree on the left.

» Recursively merge its right subtree and
the other tree.

Merging Two Leftist Heaps

» merge(T,,T,) returns one leftist heap
containing all elements of the two
(distinct) leftist heaps T, and T,

T, 0) 0)
merge

o
VAN

Leftist Merge Continued

SN
AN AN/ANA

R’ =Merge(Ry, Ty)

runtime:

Leftist Merge Example

0
(special case) ®
|§1

Sewing Up the Leftist Example

Done?

Finally...(Leftist)

Operations on Leftist Heaps

merge with two trees of total size n: O(log n)
insert with heap size n: O(log n)

— pretend node is a size 1 leftist heap

— insert by merging original heap with one node

heap
ANLEEVAN

« deleteMin with heap size n: O(log n)
— remove and return root
— merge left and right subtrees

Random Definition:
Amortized Time

am-or-tized time:
Running time limit resulting from “writing off” expensive
runs of an algorithm over multiple cheap runs of the

algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Difference from average time:

