CSE 326 Data Structures

Dave Bacon

Graphs

Logisitics

- Turn in Homework 6...
- Project 3 code due on Monday!Project 3 writeup due on Thursday!
- Homework 7 will be due....
- Read Chapter 9 of Weiss
- Complain about the class on the survey on the webpage!

Graph... ADT?

· Not quite an ADT... operations not clear

 A formalism for representing relationships between objects

Graph g = (V, E)Set of vertices:

 $V = \{v_1, v_2, ..., v_n\}$ Set of edges:

> $E = \{e_1, e_2, ..., e_n\}$ where each e, connects two vertices (v,1,v,2)

 $E = \{(Luke, Leia).$

V = {Han, Leia, Luke}

(Han. Leia).

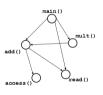
(Leia, Han) }

Han

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined



Graph Representations

Han

- 0. List of vertices + list of edges
- 2-D matrix of vertices (marking edges in the cells) "adiacency matrix" 2. List of vertices each with a list of adjacent vertices

"adjacency list" Things we might want to do:

- iterate over vertices
- iterate over edges
- iterate over vertices adi, to a vertex · check whether an edge exists

Vertices and edges may be labeled

Representation 1: Adjacency Matrix

A | V | x | V | array in which an element (u,v) is true if and only if there is an edge from u to v

	Han	Luke	Leia
Han			
Luke			
Leia			

Representation

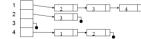
adjacency matrix:

A[u][v]

$$\left\{ \begin{array}{lll} weight & \quad &, \ if \quad (u, \quad v) \quad \in \ E \\ 0 & \quad &, \ if \quad (u, \quad v) \quad \not \in \ E \end{array} \right.$$

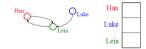
Representation

adjacency list:



Representation 2: Adjacency List

A |V|-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices



space requirements:

runtime:

Some Applications: Moving Around Washington

What's the *shortest way* to get from Seattle to Pullman? Edge labels:

Some Applications: Moving Around Washington

What's the *fastest way* to get from Seattle to Pullman? Edge labels:

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down,

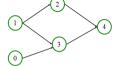
Some Applications: Bus Routes in Downtown Seattle

If we're at 3rd and Pine, how can we get to 1st and University using Metro?

Application: Topological Sort

Given a directed graph, G = (V, E), output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?



Valid Topological Sorts:

Topological Sort: Take One

- Label each vertex with its in-degree (# of inbound edges)
- While there are vertices remaining:
 - a. Choose a vertex v of in-degree zero: output v
- Reduce the in-degree of all vertices adjacent to v
 - Remove v from the list of vertices

Runtime:

```
void Graph::topsort(){
  Vertex v. w:
  labelEachVertexWithItsInDegree():
  for (int counter=0: counter < NUM VERTICES:
                                    counter++) {
    v = findNewVertexOfDegreeZero();
    v.topologicalNum = counter:
    for each w adjacent to v
      w.indegree--:
```

Topological Sort: Take Two

- 1. Label each vertex with its in-degree
- Initialize a queue Q to contain all in-degree zero vertices
- While Q not empty
 - a. v = Q.dequeue; output v
 - b. Reduce the in-degree of all vertices adjacent to \boldsymbol{v}
 - c. If new in-degree of any such vertex u is zero
 O.engueue(u)

Note: could use a stack, list, set, box, ... instead of a queue

Runtime:

```
void Graph::topsort() {
 Oueue g(NUM VERTICES): int counter = 0: Vertex v. w:
  labelEachVertexWithItsIn-degree():
 g.makeEmptv();
                            intialize the
 for each vertex v
                               queue
    if (v.indegree = 0)
      g.engueue(v);
 while (!g.isEmpty()) { get a vertex with
                          indegree 0
    v = q.dequeue();
    v.topologicalNum = ++counter;
    for each w adjacent to v
      if (--w.indegree == 0)
                                 insert new
                                   eligible
        q.enqueue(w);
                                  vertices
```

Runtime:

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
 Is there a path between two given vertices?
 - Is the graph (weakly) connected?
- Which one:
 - Uses a queue?
 - Uses a stack?
 - Oses a stack?– Always finds the shortest path (for unweighted graphs)?

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

Directed graphs are strongly connected if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring directen

A complete graph has an edge between every pair of vertices

The Shortest Path Problem

Given a graph G, edge costs c., and vertices s and t in G find the shortest path from s to t

```
- unweighted length of path p = k
                                          (a.k.a. length)
- weighted length of path p = \sum_{i=0..k-1} c_{i,i+1} (a.k.a cost)
```

Path length equals path cost when?

For a path $p = v_0 v_1 v_2 \dots v_k$

Single Source Shortest Paths (SSSP) Given a graph G edge costs G, and vertex

Given a graph G, edge costs c_{ij} , and vertex s, find the shortest paths from s to <u>all</u> vertices in G.

Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)

Given a graph ${\cal G}$ and edge costs c_{ij} , find the shortest paths between <u>all pairs</u> of vertices in ${\bf G}$.

- Is this harder or easier than SSSP?

- Could we use SSSP as a subroutine to solve this?

Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
 - ...

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- _ ...

SSSP: Unweighted Version

Ideas?

```
void Graph::unweighted (Vertex s) {
  Oueue a(NUM VERTICES);
  Vertex v. w:
  q.enqueue(s);
  s dist = 0:
  while (!q.isEmpty()){
    v = q.dequeue();
                                   each edge examined
    for each w adjacent to v
                                   at most once - if adjacency
                                   lists are used
      if (w.dist == INFINITY) {
         w.dist = v.dist + 1:
         w.path = v;
                                  each vertex enqueued
         g.engueue(w); +
                                  at most once
          total running time: O(
```

Weighted SSSP: The Quest For Food

Can we calculate shortest distance to all nodes from Allen Center?

Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn't (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

E.W. Dijkstra (1930-2002)

1972 Turning Award Winner, Programming Languages, semaphores, and ...