CSE 326 Data Structures

Dave Bacon

Graphs

Logisitics
* Turn in Homework 6...

* Project 3 code due on Monday!
* Project 3 writeup due on Thursday!

* Homework 7 will be due....
* Read Chapter 9 of Weiss

» Complain about the class on the survey on the
webpage!

Graph... ADT?

* Not quite an ADT...

operations not clear

Han
) . Luke
A formalism for representing w
relationships between

Leia

objects

Graph 6 = (v,E)

— Set of vertices: V = {Han, Leia, Luke}
Vo= {vy, V., V,} E= ‘Eg:‘:eL’::)

— Set of edges:

(Leia, Han)}
E = {e;,8;,.,8,}

where each e, connects two
vertices (vy;,vi,)

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

Aside: If program call-
graph is a DAG, then all
procedure cdlls can be in-
lined

main ()

mult ()

add ()

read ()
access ()

Graph Representations

Han

'Luke
0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) -
“adjacency matrix”
2. List of vertices each with a list of adjacent vertices
“adjacency list”
Things we might want to do: Vertices and edges

iterate over vertices may be labeled
iterate over edges

iterate over vertices adj. to a vertex

check whether an edge exists

Representation 1: Adjacency
Matrix
A |V| x |Vv]| array in which an element

(u,v) istrue if and only if there is an
edge fromutov Han Luke Leia

space requirements: runtime:

Representation
+ adjacency matrix:

Af]iV] _ weight Lif (u, v) € E
o - 0 Jif W V) e E

1. 2 3 4

Representation
+ adjacency list:

Representation 2: Adjacency
List
A |v|-ary list (array) in which each entry stores a list
(linked list) of all adjacent vertices

Han
Han jl‘ ke
(Q) Luke
Leia
Leia

space requirements: runtime:

Some Applications:
Moving Around Washington

‘What’s the shortest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Moving Around Washington

‘What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Reliability of Communication

Bellingham

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

4th ‘ ‘ o
3rd e
2nd c"»_. L
15t et
) b c c o
s 5 3 2 ¢
° s 5 2
B

If we’re at 3™ and Pine, how can we get to
15t and University using Metro?

Application: Topological Sort

Given a directed graph, ¢ = (V,E), output all the
vertices in vV such that no vertex is output before
any other vertex with an edge to it.

Is the output unique?

Valid Topological Sorts:

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero;
output v

3. Reduce the in-degree of all vertices adjacent
tov

a. Remove v from the list of vertices

Runtime.

void Graph::topsort() {
Vertex v, w;

labelEachVertexWithItsInDegree() ;

for (int counter=0; counter < NUM VERTICES;
counter++) {

v = findNewVertexOfDegreeZero () ;

= counter;

v.topologicalNum
for each w adjacent to v

w.indegree--;

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree
zero vertices
3. While Q not empty
a. v=Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v

c. Ifnew in-degree of any such vertex u is zero
Q.enqueue(u)

Note: could use a stack, list, set,

box, ... instead of a queue
Runtime.

void Graph::topsort () {
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
labelEachVertexWithItsIn-degree () ;

q.makeEmpty () ;
for each vertex v
if (v.indegree = 0)

q.enqueue (v) ;

while (!q.isEmpty()){
v = g.dequeue () ;
v.topologicalNum = ++counter;

for each w adjacent to v
if (--w.indegree == 0) |insertnew
q.enqueue (w) ;

eligible
vertices

}
Runtime:

Graph Traversals

* Breadth-first search (and depth-first search) work
for arbitrary (directed or undirected) graphs - not
just mazes!

— Must mark visited vertices so you do not go into an
infinite loop!
« Either can be used to determine connectivity:
— Is there a path between two given vertices?
— Is the graph (weakly) connected?
» Which one:
— Uses a queue?
— Uses a stack?

— Always finds the shortest path (for unweighted graphs)?

Graph Connectivity

Undirected graphs are connected if there is a path between
any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other /.\

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direc.g_

A complete graph has an edge between every pair of vertices

The Shortest Path Problem

Given a graph G, edge costs ¢;;, and vertices s and t
in G, find the shortest path from s to t.

Forapathp=v,v, v, ... v,
— unweighted length of path p = k (ak.a. length)

— weighted length of pathp =X, s ¢,y (a-K.a cost)

Path length equals path cost when ?

Single Source Shortest Paths
(SSSP)

Given a graph G, edge costs ¢;;, and vertex
s, find the shortest paths from s to all

vertices in G.

— Is this harder or easier than the previous
problem?

All Pairs Shortest Paths (APSP)

Given a graph G and edge costs ¢;, find the
shortest paths between all pairs of vertices

in G.

— Is this harder or easier than SSSP?

— Could we use SSSP as a subroutine to solve
this?

Variations of SSSP

— Weighted vs. unweighted

— Directed vs undirected

— Cyclic vs. acyclic

— Positive weights only vs. negative weights
allowed

— Shortest path vs. longest path

Applications

— Network routing
— Driving directions
— Cheap flight tickets

— Critical paths in project management
(see textbook)

SSSP: Unweighted Version

Ideas?

void Graph: :unweighted (Vertex s){
Queue q(NUM_VERTICES) ;
Vertex v, w;
g.enqueue (s) ;
s.dist = 0;

while (1q.isEmpty()){
v = q.dequeue () ; each edge examined
for each w adjacent to v +|atmost once - if adjacency
if (w.dist = INFINITY){ |listsareused
w.dist = v.dist + 1;

w.path = v;

q.enqueue (w) ; «—|

¥ [total running time: OC)

Weighted SSSP:
The Quest For Food

Home

Cedars

Coke Closet

Café Allegro

Schultzy’s Vending Machine in EE1

Parent’s Home

Can we calculate shortest distance to all nodes from Allen Center?

Dijkstra, Edsger Wybe

Legendary figure in computer
science; was a professor at
University of Texas.

Supported teaching introductory
computer courses without
computers (pencil and paper
programming)

Supposedly wouldn’t (until very late
in life) read his e-mail; so, his staff
had to print out messages and put
them in his box.

1972 Tuming Award Winner,

E.W. Dijkstra (1930-2002)

Programming Languages, semaphores, and ...

