
Intro to Digital Logic, Lab 6

Communicating Sequential Logic

Lab Objectives

In the last lab we developed a single, simple FSM. Now we want to build a more complex

system with multiple FSMs. Careful creation of a block diagram, and design and testing of

each individual piece, will be key to getting this working well. Please note that this lab will
take significantly more time than the previous labs you have done. So please start early, be
methodical, and thoroughly simulate and check each individual FSM before connecting the
FSMs together.

Design Problem – Tug of War

Sweat pouring from their brow, body straining, muscles pulsing back and forth, we have the

epic conflict which is: Tug Of War! It’s time to update this rope-based team sport into an

electronic analog of finger-pounding power!

We’re going to build a 2-player game using the KEY[0] and KEY[3] buttons, and the leds

from LEDR9 to LEDR1, skipping LEDR0, as the playfield. When the game starts, only the

centermost LED is lit (LEDR5). Each time the first player presses the KEY[0] button, the

light moves one LED right. Each time the second player presses the KEY[3] button, the light

moves one LED to the left. If the light ever goes off the end of the playfield, the player that

moved it off the end wins, and the HEX0 7-segment display shows 1 for first player, 2 for

second player. You can use SW9 as the reset signal.

If you try to design this as one big state machine, you will never get anything working.

Instead, think about breaking it down into smaller pieces. We will help you with some ideas,

but we STRONGLY advise putting together a block diagram of the system early in the

design process.

You should use the 50MHz clock directly (pin CLOCK_50) to control the whole design –

we’ll assume no player can press the button faster than 25 million times a second…

User Input

Since we are using a fast clock, each time the user presses a button the button will be ON for

many cycles, and OFF for many cycles. However, you want to design a simple FSM that

detects the moment the button is pressed – its output is TRUE for only 1 cycle for every

button press. This will handle all user input.

Playfield

There are 9 lights, which is too big to do as a single huge FSM. However, what about an

FSM for each location? A given playfield light needs to know the following:

 Does it start as TRUE (the center LED) or FALSE? This could be an input to the

module.

 During play, it needs to know which button(s) were just pressed, whether its light is

currently lit, and whether its right and left neighbors are currently lit.

 Given all that data, plus the reset signal, it’s now easy to figure out whether you

should be lit during the next clock cycle.

Victory

You can tell when someone wins by watching the ends of the playfield – when the leftmost

LED is lit and only the left button is pressed, the left player wins. Similar logic can be found

for the right player. So, build a unit that controls the HEX0 display, based on these victory

conditions.

Suggested FSMs

Your playfield and victory lights could be controlled by the following FSMs. Note that these

are only suggestions. You are free to create the design using any number of different FSMs.

module centerLight (Clock, Reset, L, R, NL, NR, lightOn);

 input Clock, Reset;

 // L is true when left key is pressed, R is true when the right key

 // is pressed, NL is true when the light on the left is on, and NR

 // is true when the light on the right is on.

 input L, R, NL, NR;

 // when lightOn is true, the center light should be on.

 output lightOn;

 // Your code goes here!!

endmodule

module normalLight (Clock, Reset, L, R, NL, NR, lightOn);

 input Clock, Reset;

 // L is true when left key is pressed, R is true when the right key

 // is pressed, NL is true when the light on the left is on, and NR

 // is true when the light on the right is on.

 input L, R, NL, NR;

 // when lightOn is true, the normal light should be on.

 output lightOn;

 // Your code goes here!!

endmodule

If you were to use the above FSMs in your design, you’d need 1 centerLight and 8

normalLight FSMs. In addition you’d need two instantiations of a userInput FSM, and logic

to determine when someone has won the competitions. None of the FSMs should require

more than four states.

Metastability

This lab has user input going into a somewhat high-speed circuit. That means there’s a pretty

good chance you can get metastability – the input to a DFF changing at about the same time

as the clock edge occurs. If you do not deal with this problem, your circuit may

randomly screw up.

To deal with metastability, make sure you send the user input (KEY[3] and KEY[0]) to a D-

flipflop BEFORE you use it in your logic (i.e. the rest of your circuit won’t use KEY[3] nor

KEY[0] directly, but instead will listen to the Q output of the DFF that receives that button as

the D input).

Overall

Build each of the pieces and test them independently in ModelSim before combining them

together. TEST EACH ELEMENT IN MODELSIM BEFORE TRYING TO HOOK IT ALL

UP. TEST THE WHOLE THING IN MODELSIM BEFORE DOWNLOADING TO THE

FPGA. If you try to do everything by just downloading it to the FPGA you will have LOTS

of trouble getting this lab working, and subsequent labs will be MUCH harder – simulation

and good complete testbenches are your friend, will SIGNIFICANTLY speed up your

debugging. Only once you have all the pieces, and then the entire system, working in

Modelsim should you download the design to the FPGA and test the working game (the fun

part…). Note that during testing you may want a slower clock – you can always use the

clock divider from lab #5 to help you in this process.

You will be graded 100 points on correctness, style, testing, etc. Your bonus goal is

developing the smallest circuit possible – measure this the same way you did in lab #5. Note

that the “Resource Utilization by Entity” report will give you the sizes of each of the modules

in your design, so you can focus your sizing improvement efforts accordingly.

Lab Demonstration/Turn-In Requirements

A TA needs to "Check You Off" for each of the tasks listed below.

 Turn in the top-level block diagram for your entire design, showing the major modules

and how they are interconnected.

 Turn in the Verilog for all of the elements of your design, including your testbenches.

You MUST have a testbench for the basic elements AND the ENTIRE design.

 Demonstrate your working design to your TA.

 Demonstrate the simulation of your entire design to your TA.

 Turn in a printout of the “Resource Utilization by Entity” page. Write on this the

computed size for your design.

 Tell the TA how many hours (estimated) it took to complete this lab, including reading,

planning, design, coding, debugging, testing, etc. Everything related to the lab (in total).

