Basic Circuit Elements

- Readings: 4-4.1.1, 4.2, 4.3-4.3.2
- Standard TTL Small-Scale Integration: 1 chip = 2-8 gates
 - Requires numerous chips to build interesting circuits
- Alternative: Complex chips for standard functions
 - Single chip that performs very complex computations
- Multiplexer/Decoder/Encoder: Standard routing elements for interconnections
- FPGAs: Programmable for arbitrary functions

Design Example: Basic Telephone System

■ Put together a simple telephone system

Basic Telephone System (cont.)

- Multiple subscribers, one operator.
 - Operator controls all connections

Standard Circuit Elements

- Develop implementations of important "Building Blocks"
 - Used in Networks, Computers, Stereos, etc.
- Multiplexer: Combine N sources onto 1 wire
- Encoder: Determine which input is active
- Decoder: Convert binary to one-of-N wires

Decoders

- Used to select one of 2^N outputs based on N input bits
- Input: N bits; output: 2^N outputs -- only *one* is active
- A decoder that has n inputs and m outputs is referred to as an $n \times m$, N:M, or n-to-m decoder
- Example: 3-to-8 decoder

Decoder Implementation

S 1	S0	D3	D2	D1	D0
0	0				
0	1				
1	0				
1	1				

Enabled Decoder Implementation

* Active High enable

En	S 1	S0	D3	D2	D1	D0
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Enabled Decoders in Verilog

```
module enDecoder2_4 (out, in, enable);
  output reg [3:0] out;
  input [1:0] in;
  input enable;

always @(*) begin
```

Encoders

- Performs the inverse operation of decoders
- Input: 2^N or less lines -- only 1 is asserted at any given time
- Output: N output lines
- Function: the output is the binary representation of the ID of the input line that is asserted

Encoder Implementation

❖ 4:2 Encoder

D3	D2	D1	D0	A1	A0	
0	0	0	1	0	0	_
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	

Priority Encoder

- Use priorities to resolve the problem of 2 or more input lines active at a time.
- One scheme: Highest ID active wins
- Also add an output to identify when at least 1 input active

D3	D2	D1	D0	A1	A0	Valid
0	0	0	0			
0	0	0	1			
0	0	1	X			
0	1	X	X			
1	X	X	X			

Multiplexer

- An element that selects data from one of many input lines and directs it to a single output line
- Input: 2^N input lines and N selection lines
- Output: the data from *one* selected input line
- Multiplexer often abbreviated as MUX

Multiplexer Implementation

■ 4:1 MUX

S 1	S0	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3
		ı

Multiplexers in General Logic

■ Implement F = XYZ + YZ with a 8:1 MUX

