Intro to Digital Design Combinational Logic

Instructor: Justin Hsia

Teaching Assistants:

Emilio Alcantara Naoto Uemura

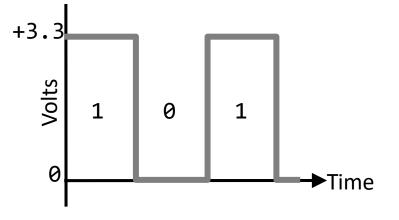
Wen Li

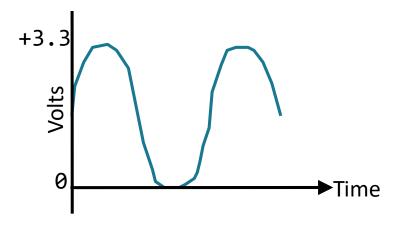
Eujean Lee

Pedro Amarante

Introducing Your Course Staff

- Your Instructor: just call me Justin
 - CSE Associate Teaching Professor
 - From California (UC Berkeley and the Bay Area)
 - Raising a toddler takes up energy and dictates my schedule


- Available in labs, office hours, and on Ed discussion
- An invaluable source of information and help
- ✤ Get to know us we are here to help you succeed!



Course Motivation

- Electronics an increasing part of our lives
 - Computers & phones
 - Vehicles (cars, planes)
 - Robots
 - Portable & household electronics
- An *introduction* to digital logic design
 - Lecture: How to think about hardware, basic higher-level circuit design techniques – preparation for EE/CSE469
 - Lab: Hands-on FPGA programming using Verilog preparation for EE/CSE371

Digital vs. Analog

Digital:

Discrete set of possible values

Binary (2 values):

On, 3.3 V, high, TRUE, "1" Off, 0 V, low, FALSE, "0"

Analog:

Values vary over a continuous range

Digital vs. Analog Systems

- Digital systems are more reliable and less error-prone
 - Slight errors can cascade in Analog system
 - Digital systems reject a significant amount of error; easy to cascade
- Computers use digital circuits internally
 - CPU, memory, I/O
- Interface circuits with "real world" often analog
 - Sensors & actuators

This course is about logic design, not system design (processor architecture), and not circuit design (transistor level)

Digital Design: What's It All About?

- Come up with an implementation using a set of primitives given a functional description and constraints
- Digital design is in some ways more art than a science
 - The creative spirit is in combining primitive elements and other components in new ways to achieve a desired function
- However, unlike art, we have objective measures of a design (*i.e.*, constraints):
 - Performance
 - Power
 - Cost

Digital Design: What's It All About?

- How do we learn how to do this?
 - Learn about the primitives and how to use them
 - Learn about design representations
 - Learn formal methods and tools to manipulate representations
 - Look at design examples
 - Use trial and error CAD tools and prototyping (practice!)

Lecture Outline

- Combinational Logic Review
- Combinational Logic in the Lab

Bookmarks

- & Website: <u>https://courses.cs.washington.edu/courses/cse369/24sp/</u>
 - Schedule (lecture slides, lab specs), weekly calendar, other useful documents
- & Ed Discussion: <u>https://edstem.org/us/courses/56771/</u>
 - Announcements made here
 - Ask and answer questions staff will monitor and contribute
- Gradescope: <u>https://www.gradescope.com/courses/746339/</u>
 - Lab submissions, Quiz grades, regrade requests
- Canvas: <u>https://canvas.uw.edu/courses/1718545/</u>
 - Grade book, Zoom links, lecture recordings

Grading

- * Labs (66%)
 - 6 regular labs 1 week each
 - Labs 3-4: 60 points each, Labs 1&2, 5-7: 100 points each
 - 1 "final project" 2 weeks
 - Lab 8 Check-In: 10 points, Lab 8: 150 points
- 3 Quizzes (no final exam)
 - Quiz 1 (10%): 20 min in class on April 23
 - Quiz 2 (10%): 30 min in class on May 14
 - Quiz 3 (14%): 60 min in class on May 28
- ↔ This class uses a straight scale (≥ 95% → 4.0)
 - Extra credit points count the same as regular points

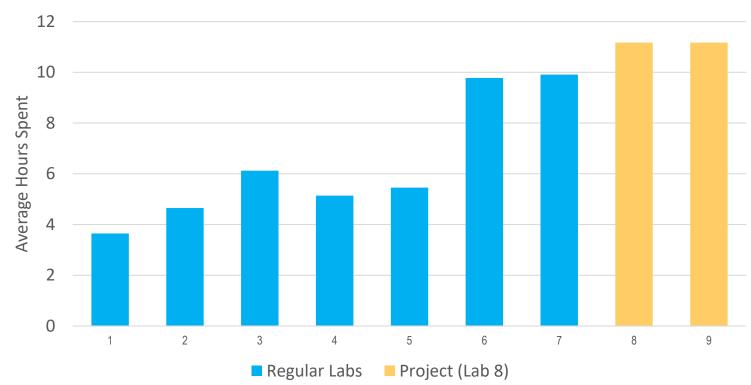
Labs

- Lab Hours: Wed & Thu 2:30-5:20 pm (CSE 003)
- Each student will get a lab kit for the quarter
 - Lab kit picked up from CSE 003 during labs/OHs this week
 - Install software on laptop (Windows or VM)
- Labs are combination of report + demo
 - Submit via Gradescope Wednesdays before 2:30 pm
 - 10-minute demos done in lab sections (sign-up process)
- Late penalties:
 - No lab report can be submitted more than two days late
 - 5 late day tokens to prevent penalties, 10%/day after that
 - No penalties on lab demos, but must be done by EOD Friday

Collaboration Policy

- Labs and project are to be completed *individually*
 - Goal is to give every student the hands-on experience
 - Violation of these rules is grounds for failing the class

* OK:

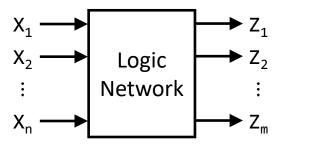

- Discussing lectures and/or readings, studying together
- High-level discussion of general approaches
- Help with debugging, tools peculiarities, etc.

Not OK:

- Developing a lab together
- Giving away solutions or having someone else do your lab for you

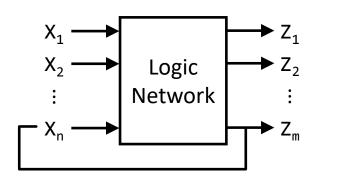
Course Workload

The workload (3 credits) ramps up significantly towards the end of the quarter:


CSE 369 Lab Hours (2018)

Lecture Outline

- Course Logistics
- * Combinational Logic Review
- Combinational Logic in the Lab


Combinational vs. Sequential Logic

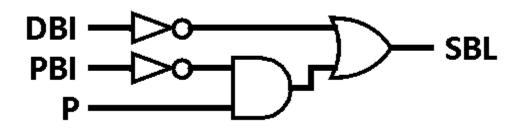
Combinational Logic (CL)

- Network of logic gates without feedback
- Outputs are functions only of inputs

Sequential Logic (SL)

- The presence of feedback introduces the notion of "state"
- Circuits that can "remember" or store information

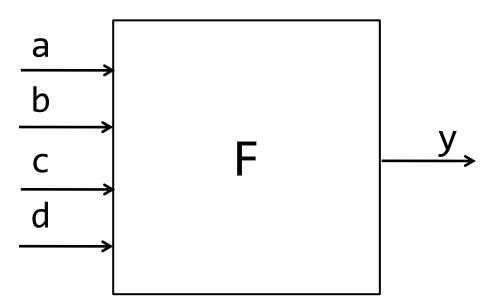
Representations of Combinational Logic


- Text Description
- Circuit Description
 - Transistors Not covered in 369
 - Logic Gates
- Truth Table
- Boolean Expression

Example: Simple Car Electronics

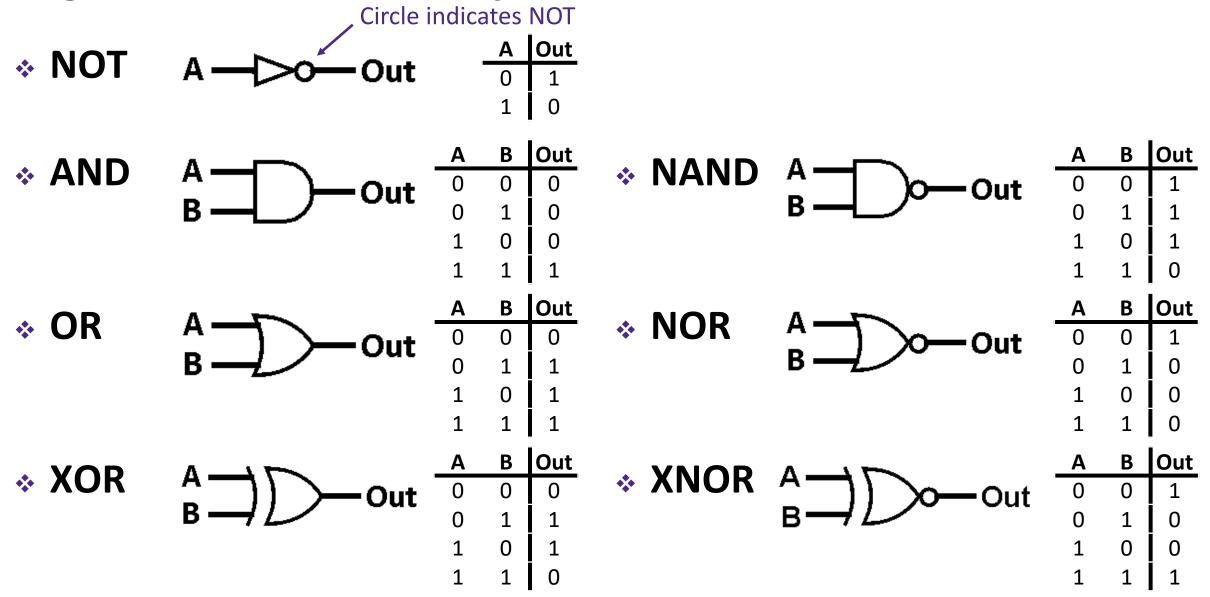
- Door Ajar (DriverDoorOpen, PassengerDoorOpen)
 - DA = DDO + PDO

- High Beam Indicator (LightsOn, HighBeamOn)
 - HBI = LO · HBO LO HBI
- Seat Belt Light (DriverBeltIn, PassengerBeltIn, Passenger)


• $SBL = \overline{DBI} + (P \cdot \overline{PBI})$

Truth Tables

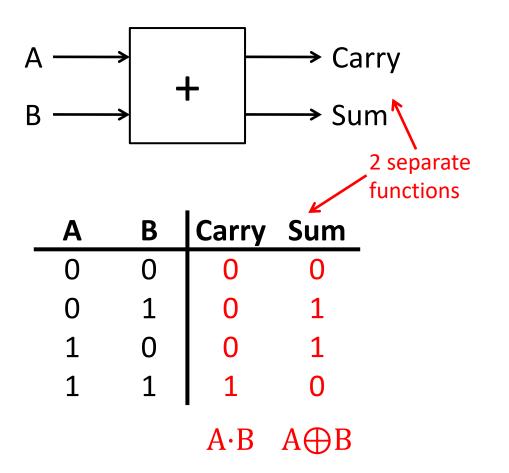
- Table that relates the inputs to a combinational logic (CL) circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 instead of high/low voltage
 - Shows output for every possible combination of inputs ("black box" approach)
- How big is the table?
 - 0 or 1 for each of N inputs
 - Each output is a separate function of inputs, so don't need to add rows for additional outputs


CL General Form

If we have N inputs, how many distinct functions F do we have?

a	b	c	d	у
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
1	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

Logic Gate Names and Symbols


More Complicated Truth Tables

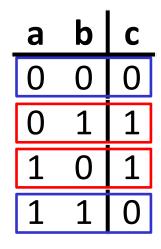
3-Input Majority

How many rows?

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1-bit Adder

Boolean Algebra


- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1
- Overbar is NOT: "logical complement"
 - If A is 0, then A is 1 and vice-versa
- Plus (+) is 2-input OR: "logical sum"
- ✤ Product (·) is 2-input AND: "logical product"
- All other gates and logical expressions can be built from combinations of these
 - *e.g.*, $A XOR B = A \bigoplus B = \overline{A}B + \overline{B}A$

Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs
 - $C = \overline{A}B + \overline{B}A$

— We can show that these are equivalent!

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs
 - $C = (A + B) \cdot (\overline{A} + \overline{B})$

Basic Boolean Identities

- $X + \overline{X} = 1$

 $* \mathbf{X} \cdot \overline{\mathbf{X}} = \mathbf{0}$

 $\ast \ \overline{\overline{X}} = X$

Basic Boolean Algebra Laws

- Commutative Law:
 - $X + Y = Y + X \qquad \qquad X \cdot Y = Y \cdot X$
- Associative Law:
 - $X+(Y+Z) = (X+Y)+Z \qquad X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$
- Distributive Law:
 - $X \cdot (Y+Z) = X \cdot Y + X \cdot Z \qquad \qquad X + YZ = (X+Y) \cdot (X+Z)$

Advanced Laws (Absorption)

- * X + XY = X
- $* XY + X\overline{Y} = X$
- $* X + \overline{X}Y = X + Y$
- * X(X + Y) = X
- $* (X + Y)(X + \overline{Y}) = X$
- $* X(\overline{X} + Y) = XY$

Practice Problem

✤ Boolean Function: $F = \overline{X}YZ + XZ$

Truth Table:				Simplification:
X	Y	Ζ	F	=
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Technology

Break

Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

Why Is This Useful?

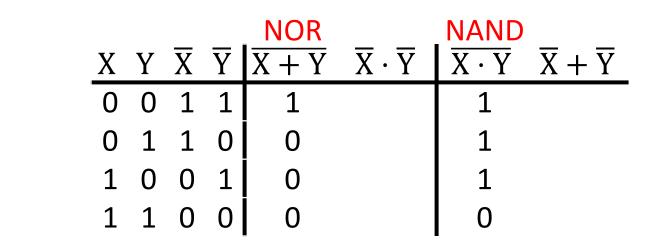
- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Faster hardware?

- Fewer inputs implies faster gates in some technologies
- Fan-ins (# of gate inputs) are limited in some technologies
- Fewer levels of gates implies reduced signal propagation delays
- # of gates (or gate packages) influences manufacturing costs
- Simpler Boolean expressions → smaller transistor networks → smaller circuit delays
 → faster hardware

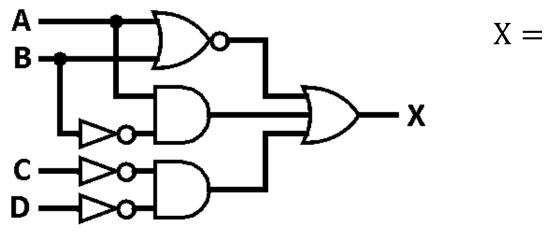

Are Logic Gates Created Equal?

No!

2-Input Gate Type	# of CMOS transistors
NOT	2
AND	6
OR	6
NAND	4
NOR	4
XOR	8
XNOR	8

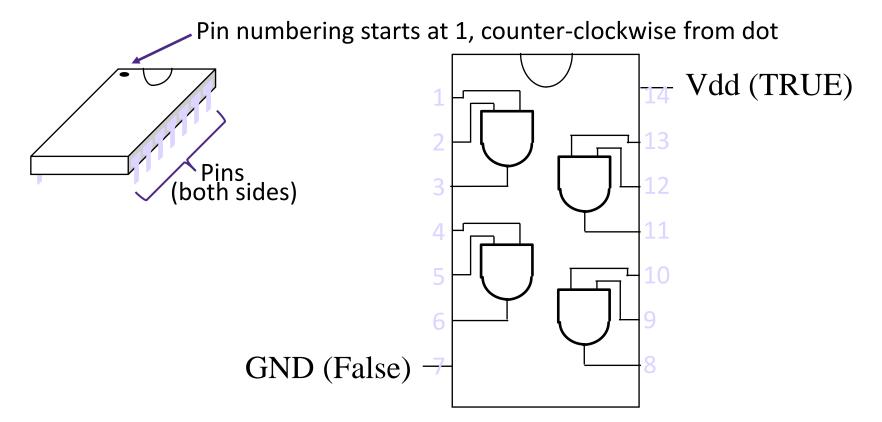
- Can recreate all other gates using only NAND or only NOR gates
 - Called "universal" gates
 - *e.g.*, A NAND A = \overline{A} , B NOR B = \overline{B}
 - DeMorgan's Law helps us here!

DeMorgan's Law



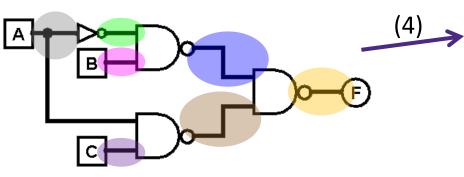
 $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

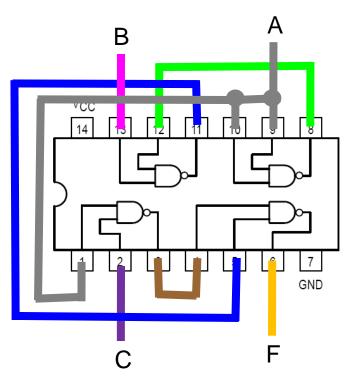
- In Boolean Algebra, converts between AND-OR and OR-AND expressions
 - $Z = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C$
 - $\overline{Z} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$
- At gate level, can convert from AND/OR to NAND/NOR gates
 - "Flip" all input/output bubbles and "switch" gate


DeMorgan's Law Practice Problem

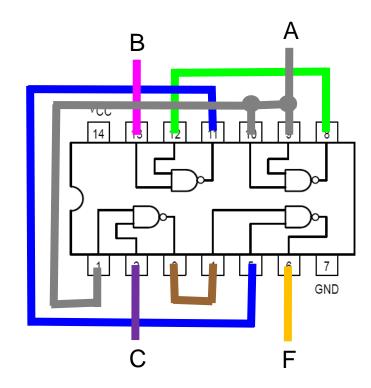
Simplify the following diagram:

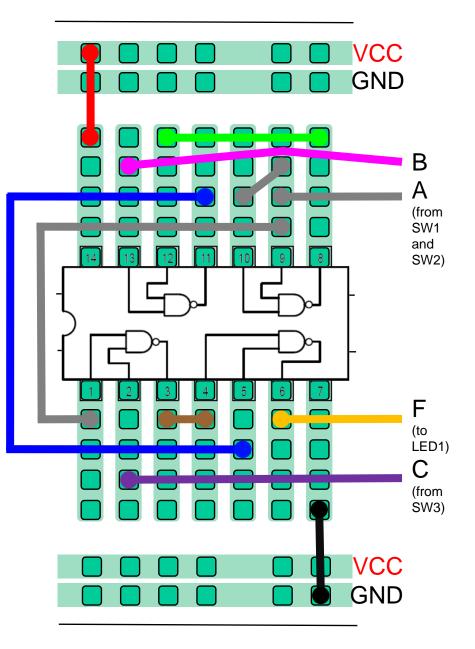
Then implement with only NAND gates:


Transistor-Transistor Logic (TTL) Packages

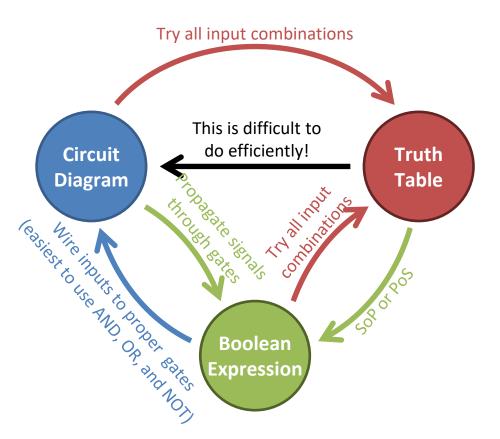

- Diagrams like these and other useful/helpful information can be found on part data sheets
 - It's really useful to learn how to read these

Mapping truth tables to logic gates


- Given a truth table:
 - 1) Write the Boolean expression
 - 2) Minimize the Boolean expression
 - 3) Draw as gates
 - 4) Map to available gates
 - 5) Determine # of packages and their connections



7 nets (wires) in this design


Breadboarding circuits

Summary

- Digital systems are constructed from Combinational and Sequential Logic
- Logic minimization to create smaller and faster hardware
- Gates come in TTL packages that require careful wiring

